mirror of
https://github.com/ciphervance/supercell-wx.git
synced 2025-10-30 22:30:06 +00:00
added comments and improved code layout
This commit is contained in:
parent
9f47e0ad72
commit
2bc971eb94
2 changed files with 73 additions and 20 deletions
|
|
@ -14,7 +14,8 @@ namespace scwx
|
|||
{
|
||||
namespace qt
|
||||
{
|
||||
namespace util {
|
||||
namespace util
|
||||
{
|
||||
namespace GeographicLib
|
||||
{
|
||||
|
||||
|
|
@ -149,15 +150,52 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
|
|||
const common::Coordinate& point,
|
||||
const units::length::meters<double> distance)
|
||||
{
|
||||
/*
|
||||
Uses the gnomonic projection to determine if the area is in the radius.
|
||||
|
||||
The first property needed to make this work is that great circles become
|
||||
lines in the projection.
|
||||
The other key property needed to make this work is described bellow
|
||||
R1 and R2 are the distances from the center point to two points
|
||||
on the (non-flat) Earth.
|
||||
R1' and R2' are the distances from the center point to the same
|
||||
two points in the gnomonic projection.
|
||||
if R1 > R2 then
|
||||
R1' > R2'
|
||||
else if R1 < R2 then
|
||||
R1' < R2'
|
||||
else if R1 == R2 then
|
||||
R1' == R2'
|
||||
|
||||
This can also be written as:
|
||||
r(d) is a function that takes the distance on Earth and converts it to a
|
||||
distance on the projection.
|
||||
R1' = r(R1), R2' = r(R2)
|
||||
r(d) is increasing
|
||||
|
||||
In this case, R1 is a point the radius away from the center, and R2 is a
|
||||
(all of the) point(s) on the edge of the area. This means that if the edge
|
||||
is in the radius R1' on the projection, it is in the radius R1 on the Earth.
|
||||
|
||||
On a spherical geodesic this works fine. R is the radius of Earth. We are
|
||||
also only concerned with points less than a hemisphere away, therefore
|
||||
0 < R1,R2 < pi/2 * R (quarter of circumference because the point is in the
|
||||
center of the hemisphere)
|
||||
r(d) = R * tan(d / R) {0 < d < pi/2 * R}
|
||||
tan(d / R) is increasing for {0 < d < pi/2 * R}
|
||||
|
||||
On non spherical geodesics, this may not work perfectly, but should be a
|
||||
close approximation.
|
||||
*/
|
||||
// Cannot have an area with just two points
|
||||
if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
::GeographicLib::Gnomonic gnomonic =
|
||||
// Ensure that the same geodesic is used here as is for the radius
|
||||
// calculation
|
||||
::GeographicLib::Gnomonic gnomonic =
|
||||
::GeographicLib::Gnomonic(DefaultGeodesic());
|
||||
geos::geom::CoordinateSequence sequence {};
|
||||
double x;
|
||||
|
|
@ -176,11 +214,19 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
|
|||
areaCoordinate.longitude_,
|
||||
x,
|
||||
y);
|
||||
// Check if the current point is the hemisphere centered on the point
|
||||
if (std::isnan(x) || std::isnan(y))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
sequence.add(x, y);
|
||||
}
|
||||
|
||||
// get a point on the circle with the radius of the range in lat lon.
|
||||
units::angle::degrees<double> angle = units::angle::degrees<double>(0);
|
||||
// Has the point be in the general direction of the area, which may help with
|
||||
// non spherical geodesics
|
||||
units::angle::degrees<double> angle = GetAngle(
|
||||
point.latitude_, point.longitude_, area[0].latitude_, area[0].longitude_);
|
||||
common::Coordinate radiusPoint = GetCoordinate(point, angle, distance);
|
||||
// get the radius in gnomonic projection
|
||||
gnomonic.Forward(point.latitude_,
|
||||
|
|
@ -189,7 +235,13 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
|
|||
radiusPoint.longitude_,
|
||||
x,
|
||||
y);
|
||||
double gnomonicRadius = sqrt(x * x + y * y);
|
||||
// radius is greater than quarter circumference of the Earth, but the area
|
||||
// is closer, so it is in range.
|
||||
if (std::isnan(x) || std::isnan(y))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
double gnomonicRadius = std::sqrt(x * x + y * y);
|
||||
|
||||
// If the sequence is not a ring, add the first point again for closure
|
||||
if (!sequence.isRing())
|
||||
|
|
@ -206,22 +258,21 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
|
|||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
// Calculate the distance the point is from the output
|
||||
geos::algorithm::distance::PointPairDistance distancePair;
|
||||
auto geometryFactory =
|
||||
geos::geom::GeometryFactory::getDefaultInstance();
|
||||
auto linearRing = geometryFactory->createLinearRing(sequence);
|
||||
auto polygon =
|
||||
geometryFactory->createPolygon(std::move(linearRing));
|
||||
geos::algorithm::distance::DistanceToPoint::computeDistance(*polygon,
|
||||
zero,
|
||||
distancePair);
|
||||
if (gnomonicRadius > distancePair.getDistance())
|
||||
else if (distance > units::length::meters<double>(0))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
// Calculate the distance the area is from the point via conversion
|
||||
// to a polygon.
|
||||
auto geometryFactory =
|
||||
geos::geom::GeometryFactory::getDefaultInstance();
|
||||
auto linearRing = geometryFactory->createLinearRing(sequence);
|
||||
auto polygon =
|
||||
geometryFactory->createPolygon(std::move(linearRing));
|
||||
|
||||
geos::algorithm::distance::PointPairDistance distancePair;
|
||||
geos::algorithm::distance::DistanceToPoint::computeDistance(
|
||||
*polygon, zero, distancePair);
|
||||
return gnomonicRadius >= distancePair.getDistance();
|
||||
}
|
||||
}
|
||||
catch (const std::exception&)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -96,6 +96,8 @@ GetDistance(double lat1, double lon1, double lat2, double lon2);
|
|||
* distance of a point. A point lying on the area boundary is considered to be
|
||||
* inside the area, and thus always in range. Any part of the area being inside
|
||||
* the radius counts as inside.
|
||||
* This is limited to having the area be in the same hemisphere centered on
|
||||
* the point, and radices up to a quarter of the circumference of the Earth.
|
||||
*
|
||||
* @param [in] area A vector of Coordinates representing the area
|
||||
* @param [in] point The point to check against the area
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue