mirror of
				https://github.com/ciphervance/supercell-wx.git
				synced 2025-10-30 23:50:05 +00:00 
			
		
		
		
	added comments and improved code layout
This commit is contained in:
		
							parent
							
								
									9f47e0ad72
								
							
						
					
					
						commit
						2bc971eb94
					
				
					 2 changed files with 73 additions and 20 deletions
				
			
		|  | @ -14,7 +14,8 @@ namespace scwx | |||
| { | ||||
| namespace qt | ||||
| { | ||||
| namespace util { | ||||
| namespace util | ||||
| { | ||||
| namespace GeographicLib | ||||
| { | ||||
| 
 | ||||
|  | @ -149,15 +150,52 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | |||
|                         const common::Coordinate&              point, | ||||
|                         const units::length::meters<double>    distance) | ||||
| { | ||||
|    /*
 | ||||
|    Uses the gnomonic projection to determine if the area is in the radius. | ||||
| 
 | ||||
|    The first property needed to make this work is that great circles become | ||||
|    lines in the projection. | ||||
|    The other key property needed to make this work is described bellow | ||||
|       R1 and R2 are the distances from the center point to two points | ||||
|       on the (non-flat) Earth. | ||||
|       R1' and R2' are the distances from the center point to the same | ||||
|       two points in the gnomonic projection. | ||||
|       if R1 > R2 then | ||||
|          R1' > R2' | ||||
|       else if R1 < R2 then | ||||
|          R1' < R2' | ||||
|       else if R1 == R2 then | ||||
|          R1' == R2' | ||||
| 
 | ||||
|       This can also be written as: | ||||
|       r(d) is a function that takes the distance on Earth and converts it to a | ||||
|       distance on the projection. | ||||
|       R1' = r(R1), R2' = r(R2) | ||||
|       r(d) is increasing | ||||
| 
 | ||||
|    In this case, R1 is a point the radius away from the center, and R2 is a | ||||
|    (all of the) point(s) on the edge of the area. This means that if the edge | ||||
|    is in the radius R1' on the projection, it is in the radius R1 on the Earth. | ||||
| 
 | ||||
|    On a spherical geodesic this works fine. R is the radius of Earth. We are | ||||
|    also only concerned with points less than a hemisphere away, therefore | ||||
|    0 < R1,R2 < pi/2 * R (quarter of circumference because the point is in the | ||||
|    center of the hemisphere) | ||||
|       r(d) = R * tan(d / R) {0 < d < pi/2 * R} | ||||
|       tan(d / R) is increasing for {0 < d < pi/2 * R} | ||||
| 
 | ||||
|    On non spherical geodesics, this may not work perfectly, but should be a | ||||
|    close approximation. | ||||
|    */ | ||||
|    // Cannot have an area with just two points
 | ||||
|    if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back())) | ||||
|    { | ||||
|       return false; | ||||
|    } | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|    ::GeographicLib::Gnomonic      gnomonic = | ||||
|    // Ensure that the same geodesic is used here as is for the radius
 | ||||
|    // calculation
 | ||||
|    ::GeographicLib::Gnomonic gnomonic = | ||||
|       ::GeographicLib::Gnomonic(DefaultGeodesic()); | ||||
|    geos::geom::CoordinateSequence sequence {}; | ||||
|    double                         x; | ||||
|  | @ -176,11 +214,19 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | |||
|                        areaCoordinate.longitude_, | ||||
|                        x, | ||||
|                        y); | ||||
|       // Check if the current point is the hemisphere centered on the point
 | ||||
|       if (std::isnan(x) || std::isnan(y)) | ||||
|       { | ||||
|          return false; | ||||
|       } | ||||
|       sequence.add(x, y); | ||||
|    } | ||||
| 
 | ||||
|    // get a point on the circle with the radius of the range in lat lon.
 | ||||
|    units::angle::degrees<double> angle = units::angle::degrees<double>(0); | ||||
|    // Has the point be in the general direction of the area, which may help with
 | ||||
|    // non spherical geodesics
 | ||||
|    units::angle::degrees<double> angle = GetAngle( | ||||
|       point.latitude_, point.longitude_, area[0].latitude_, area[0].longitude_); | ||||
|    common::Coordinate radiusPoint = GetCoordinate(point, angle, distance); | ||||
|    // get the radius in gnomonic projection
 | ||||
|    gnomonic.Forward(point.latitude_, | ||||
|  | @ -189,7 +235,13 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | |||
|                     radiusPoint.longitude_, | ||||
|                     x, | ||||
|                     y); | ||||
|    double gnomonicRadius = sqrt(x * x + y * y); | ||||
|    // radius is greater than quarter circumference of the Earth, but the area
 | ||||
|    // is closer, so it is in range.
 | ||||
|    if (std::isnan(x) || std::isnan(y)) | ||||
|    { | ||||
|       return true; | ||||
|    } | ||||
|    double gnomonicRadius = std::sqrt(x * x + y * y); | ||||
| 
 | ||||
|    // If the sequence is not a ring, add the first point again for closure
 | ||||
|    if (!sequence.isRing()) | ||||
|  | @ -206,22 +258,21 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | |||
|          { | ||||
|             return true; | ||||
|          } | ||||
| 
 | ||||
|          // Calculate the distance the point is from the output
 | ||||
|          geos::algorithm::distance::PointPairDistance distancePair; | ||||
|          auto geometryFactory = | ||||
|             geos::geom::GeometryFactory::getDefaultInstance(); | ||||
|          auto linearRing = geometryFactory->createLinearRing(sequence); | ||||
|          auto polygon    = | ||||
|             geometryFactory->createPolygon(std::move(linearRing)); | ||||
|          geos::algorithm::distance::DistanceToPoint::computeDistance(*polygon, | ||||
|                                                                      zero, | ||||
|                                                                      distancePair); | ||||
|          if (gnomonicRadius > distancePair.getDistance()) | ||||
|          else if (distance > units::length::meters<double>(0)) | ||||
|          { | ||||
|             return true; | ||||
|          } | ||||
|             // Calculate the distance the area is from the point via conversion
 | ||||
|             // to a polygon.
 | ||||
|             auto geometryFactory = | ||||
|                geos::geom::GeometryFactory::getDefaultInstance(); | ||||
|             auto linearRing = geometryFactory->createLinearRing(sequence); | ||||
|             auto polygon = | ||||
|                geometryFactory->createPolygon(std::move(linearRing)); | ||||
| 
 | ||||
|             geos::algorithm::distance::PointPairDistance distancePair; | ||||
|             geos::algorithm::distance::DistanceToPoint::computeDistance( | ||||
|                *polygon, zero, distancePair); | ||||
|             return gnomonicRadius >= distancePair.getDistance(); | ||||
|          } | ||||
|       } | ||||
|       catch (const std::exception&) | ||||
|       { | ||||
|  |  | |||
|  | @ -96,6 +96,8 @@ GetDistance(double lat1, double lon1, double lat2, double lon2); | |||
|  * distance of a point. A point lying on the area boundary is considered to be | ||||
|  * inside the area, and thus always in range. Any part of the area being inside | ||||
|  * the radius counts as inside. | ||||
|  * This is limited to having the area be in the same hemisphere centered on | ||||
|  * the point, and radices up to a quarter of the circumference of the Earth. | ||||
|  * | ||||
|  * @param [in] area A vector of Coordinates representing the area | ||||
|  * @param [in] point The point to check against the area | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 AdenKoperczak
						AdenKoperczak