mirror of
				https://github.com/ciphervance/supercell-wx.git
				synced 2025-10-31 17:00:05 +00:00 
			
		
		
		
	added comments and improved code layout
This commit is contained in:
		
							parent
							
								
									9f47e0ad72
								
							
						
					
					
						commit
						2bc971eb94
					
				
					 2 changed files with 73 additions and 20 deletions
				
			
		|  | @ -14,7 +14,8 @@ namespace scwx | ||||||
| { | { | ||||||
| namespace qt | namespace qt | ||||||
| { | { | ||||||
| namespace util { | namespace util | ||||||
|  | { | ||||||
| namespace GeographicLib | namespace GeographicLib | ||||||
| { | { | ||||||
| 
 | 
 | ||||||
|  | @ -149,15 +150,52 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | ||||||
|                         const common::Coordinate&              point, |                         const common::Coordinate&              point, | ||||||
|                         const units::length::meters<double>    distance) |                         const units::length::meters<double>    distance) | ||||||
| { | { | ||||||
|  |    /*
 | ||||||
|  |    Uses the gnomonic projection to determine if the area is in the radius. | ||||||
|  | 
 | ||||||
|  |    The first property needed to make this work is that great circles become | ||||||
|  |    lines in the projection. | ||||||
|  |    The other key property needed to make this work is described bellow | ||||||
|  |       R1 and R2 are the distances from the center point to two points | ||||||
|  |       on the (non-flat) Earth. | ||||||
|  |       R1' and R2' are the distances from the center point to the same | ||||||
|  |       two points in the gnomonic projection. | ||||||
|  |       if R1 > R2 then | ||||||
|  |          R1' > R2' | ||||||
|  |       else if R1 < R2 then | ||||||
|  |          R1' < R2' | ||||||
|  |       else if R1 == R2 then | ||||||
|  |          R1' == R2' | ||||||
|  | 
 | ||||||
|  |       This can also be written as: | ||||||
|  |       r(d) is a function that takes the distance on Earth and converts it to a | ||||||
|  |       distance on the projection. | ||||||
|  |       R1' = r(R1), R2' = r(R2) | ||||||
|  |       r(d) is increasing | ||||||
|  | 
 | ||||||
|  |    In this case, R1 is a point the radius away from the center, and R2 is a | ||||||
|  |    (all of the) point(s) on the edge of the area. This means that if the edge | ||||||
|  |    is in the radius R1' on the projection, it is in the radius R1 on the Earth. | ||||||
|  | 
 | ||||||
|  |    On a spherical geodesic this works fine. R is the radius of Earth. We are | ||||||
|  |    also only concerned with points less than a hemisphere away, therefore | ||||||
|  |    0 < R1,R2 < pi/2 * R (quarter of circumference because the point is in the | ||||||
|  |    center of the hemisphere) | ||||||
|  |       r(d) = R * tan(d / R) {0 < d < pi/2 * R} | ||||||
|  |       tan(d / R) is increasing for {0 < d < pi/2 * R} | ||||||
|  | 
 | ||||||
|  |    On non spherical geodesics, this may not work perfectly, but should be a | ||||||
|  |    close approximation. | ||||||
|  |    */ | ||||||
|    // Cannot have an area with just two points
 |    // Cannot have an area with just two points
 | ||||||
|    if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back())) |    if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back())) | ||||||
|    { |    { | ||||||
|       return false; |       return false; | ||||||
|    } |    } | ||||||
| 
 | 
 | ||||||
| 
 |    // Ensure that the same geodesic is used here as is for the radius
 | ||||||
| 
 |    // calculation
 | ||||||
|    ::GeographicLib::Gnomonic      gnomonic = |    ::GeographicLib::Gnomonic gnomonic = | ||||||
|       ::GeographicLib::Gnomonic(DefaultGeodesic()); |       ::GeographicLib::Gnomonic(DefaultGeodesic()); | ||||||
|    geos::geom::CoordinateSequence sequence {}; |    geos::geom::CoordinateSequence sequence {}; | ||||||
|    double                         x; |    double                         x; | ||||||
|  | @ -176,11 +214,19 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | ||||||
|                        areaCoordinate.longitude_, |                        areaCoordinate.longitude_, | ||||||
|                        x, |                        x, | ||||||
|                        y); |                        y); | ||||||
|  |       // Check if the current point is the hemisphere centered on the point
 | ||||||
|  |       if (std::isnan(x) || std::isnan(y)) | ||||||
|  |       { | ||||||
|  |          return false; | ||||||
|  |       } | ||||||
|       sequence.add(x, y); |       sequence.add(x, y); | ||||||
|    } |    } | ||||||
| 
 | 
 | ||||||
|    // get a point on the circle with the radius of the range in lat lon.
 |    // get a point on the circle with the radius of the range in lat lon.
 | ||||||
|    units::angle::degrees<double> angle = units::angle::degrees<double>(0); |    // Has the point be in the general direction of the area, which may help with
 | ||||||
|  |    // non spherical geodesics
 | ||||||
|  |    units::angle::degrees<double> angle = GetAngle( | ||||||
|  |       point.latitude_, point.longitude_, area[0].latitude_, area[0].longitude_); | ||||||
|    common::Coordinate radiusPoint = GetCoordinate(point, angle, distance); |    common::Coordinate radiusPoint = GetCoordinate(point, angle, distance); | ||||||
|    // get the radius in gnomonic projection
 |    // get the radius in gnomonic projection
 | ||||||
|    gnomonic.Forward(point.latitude_, |    gnomonic.Forward(point.latitude_, | ||||||
|  | @ -189,7 +235,13 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | ||||||
|                     radiusPoint.longitude_, |                     radiusPoint.longitude_, | ||||||
|                     x, |                     x, | ||||||
|                     y); |                     y); | ||||||
|    double gnomonicRadius = sqrt(x * x + y * y); |    // radius is greater than quarter circumference of the Earth, but the area
 | ||||||
|  |    // is closer, so it is in range.
 | ||||||
|  |    if (std::isnan(x) || std::isnan(y)) | ||||||
|  |    { | ||||||
|  |       return true; | ||||||
|  |    } | ||||||
|  |    double gnomonicRadius = std::sqrt(x * x + y * y); | ||||||
| 
 | 
 | ||||||
|    // If the sequence is not a ring, add the first point again for closure
 |    // If the sequence is not a ring, add the first point again for closure
 | ||||||
|    if (!sequence.isRing()) |    if (!sequence.isRing()) | ||||||
|  | @ -206,22 +258,21 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | ||||||
|          { |          { | ||||||
|             return true; |             return true; | ||||||
|          } |          } | ||||||
| 
 |          else if (distance > units::length::meters<double>(0)) | ||||||
|          // Calculate the distance the point is from the output
 |  | ||||||
|          geos::algorithm::distance::PointPairDistance distancePair; |  | ||||||
|          auto geometryFactory = |  | ||||||
|             geos::geom::GeometryFactory::getDefaultInstance(); |  | ||||||
|          auto linearRing = geometryFactory->createLinearRing(sequence); |  | ||||||
|          auto polygon    = |  | ||||||
|             geometryFactory->createPolygon(std::move(linearRing)); |  | ||||||
|          geos::algorithm::distance::DistanceToPoint::computeDistance(*polygon, |  | ||||||
|                                                                      zero, |  | ||||||
|                                                                      distancePair); |  | ||||||
|          if (gnomonicRadius > distancePair.getDistance()) |  | ||||||
|          { |          { | ||||||
|             return true; |             // Calculate the distance the area is from the point via conversion
 | ||||||
|          } |             // to a polygon.
 | ||||||
|  |             auto geometryFactory = | ||||||
|  |                geos::geom::GeometryFactory::getDefaultInstance(); | ||||||
|  |             auto linearRing = geometryFactory->createLinearRing(sequence); | ||||||
|  |             auto polygon = | ||||||
|  |                geometryFactory->createPolygon(std::move(linearRing)); | ||||||
| 
 | 
 | ||||||
|  |             geos::algorithm::distance::PointPairDistance distancePair; | ||||||
|  |             geos::algorithm::distance::DistanceToPoint::computeDistance( | ||||||
|  |                *polygon, zero, distancePair); | ||||||
|  |             return gnomonicRadius >= distancePair.getDistance(); | ||||||
|  |          } | ||||||
|       } |       } | ||||||
|       catch (const std::exception&) |       catch (const std::exception&) | ||||||
|       { |       { | ||||||
|  |  | ||||||
|  | @ -96,6 +96,8 @@ GetDistance(double lat1, double lon1, double lat2, double lon2); | ||||||
|  * distance of a point. A point lying on the area boundary is considered to be |  * distance of a point. A point lying on the area boundary is considered to be | ||||||
|  * inside the area, and thus always in range. Any part of the area being inside |  * inside the area, and thus always in range. Any part of the area being inside | ||||||
|  * the radius counts as inside. |  * the radius counts as inside. | ||||||
|  |  * This is limited to having the area be in the same hemisphere centered on | ||||||
|  |  * the point, and radices up to a quarter of the circumference of the Earth. | ||||||
|  * |  * | ||||||
|  * @param [in] area A vector of Coordinates representing the area |  * @param [in] area A vector of Coordinates representing the area | ||||||
|  * @param [in] point The point to check against the area |  * @param [in] point The point to check against the area | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 AdenKoperczak
						AdenKoperczak