Load level 2 radar data for rendering

This commit is contained in:
Dan Paulat 2021-07-25 17:36:26 -05:00
parent 3a3843c280
commit 421c600ed0
5 changed files with 239 additions and 44 deletions

View file

@ -63,60 +63,158 @@ void RadarView::Initialize()
boost::timer::cpu_timer timer;
// TODO: Pick this based on radar data
const std::vector<float>& coordinates =
p->radarManager_->coordinates(common::RadialSize::_0_5Degree);
std::shared_ptr<const wsr88d::Ar2vFile> level2Data =
p->radarManager_->level2_data();
if (level2Data == nullptr)
{
return;
}
// TODO: Pick these based on view settings
auto radarData = level2Data->radar_data()[0];
wsr88d::rda::DataBlockType blockType = wsr88d::rda::DataBlockType::MomentRef;
// Calculate vertices
timer.start();
auto momentData0 = radarData[0]->moment_data_block(blockType);
std::vector<float>& vertices = p->vertices_;
const uint32_t radials = common::MAX_RADIALS;
const uint32_t gates = common::MAX_DATA_MOMENT_GATES;
const size_t radials = radarData.size();
const uint32_t gates = momentData0->number_of_data_moment_gates();
vertices.clear();
vertices.resize(radials * gates * VERTICES_PER_BIN * VALUES_PER_VERTEX);
size_t index = 0;
for (uint16_t radial = 0; radial < 720; ++radial)
// Compute threshold at which to display an individual bin
const float scale = momentData0->scale();
const float offset = momentData0->offset();
const uint16_t snrThreshold =
std::lroundf(momentData0->snr_threshold_raw() * scale / 10 + offset);
// Azimuth resolution spacing:
// 1 = 0.5 degrees
// 2 = 1.0 degrees
const float radialMultiplier =
2.0f /
std::clamp<int8_t>(radarData[0]->azimuth_resolution_spacing(), 1, 2);
const float startAngle = radarData[0]->azimuth_angle();
const uint16_t startRadial = std::lroundf(startAngle * radialMultiplier);
for (uint16_t radial = 0; radial < radials; ++radial)
{
const float dataMomentRange = 2.125f * 1000.0f;
const float dataMomentInterval = 0.25f * 1000.0f;
const float dataMomentIntervalH = dataMomentInterval * 0.5f;
const float snrThreshold = 2.0f;
auto radialData = radarData[radial];
auto momentData = radarData[radial]->moment_data_block(blockType);
const uint16_t startGate = 7;
const uint16_t numberOfDataMomentGates = 1832;
// Compute gate interval
const uint16_t dataMomentRange = momentData->data_moment_range_raw();
const uint16_t dataMomentInterval =
momentData->data_moment_range_sample_interval_raw();
const uint16_t dataMomentIntervalH = dataMomentInterval / 2;
// Compute gate size (number of base 250m gates per bin)
const uint16_t gateSize = std::max<uint16_t>(1, dataMomentInterval / 250);
// Compute gate range [startGate, endGate)
const uint16_t startGate = (dataMomentRange - dataMomentIntervalH) / 250;
const uint16_t numberOfDataMomentGates =
std::min<uint16_t>(momentData->number_of_data_moment_gates(),
static_cast<uint16_t>(gates));
const uint16_t endGate =
std::min<uint16_t>(numberOfDataMomentGates + startGate,
common::MAX_DATA_MOMENT_GATES - 1);
std::min<uint16_t>(startGate + numberOfDataMomentGates * gateSize,
common::MAX_DATA_MOMENT_GATES);
for (uint16_t gate = startGate; gate < endGate; ++gate)
const uint8_t* dataMoments8 = nullptr;
const uint16_t* dataMoments16 = nullptr;
if (momentData->data_word_size() == 8)
{
size_t offset1 = (radial * common::MAX_DATA_MOMENT_GATES + gate) * 2;
size_t offset2 = offset1 + 2;
size_t offset3 = (((radial + 1) % common::MAX_RADIALS) *
common::MAX_DATA_MOMENT_GATES +
gate) *
2;
size_t offset4 = offset3 + 2;
dataMoments8 =
reinterpret_cast<const uint8_t*>(momentData->data_moments());
}
else
{
dataMoments16 =
reinterpret_cast<const uint16_t*>(momentData->data_moments());
}
vertices[index++] = coordinates[offset1];
vertices[index++] = coordinates[offset1 + 1];
for (uint16_t gate = startGate, i = 0; gate + gateSize <= endGate;
gate += gateSize, ++i)
{
uint16_t dataValue =
(dataMoments8 != nullptr) ? dataMoments8[i] : dataMoments16[i];
vertices[index++] = coordinates[offset2];
vertices[index++] = coordinates[offset2 + 1];
if (dataValue < snrThreshold)
{
continue;
}
vertices[index++] = coordinates[offset3];
vertices[index++] = coordinates[offset3 + 1];
if (gate > 0)
{
const uint16_t baseCoord = gate - 1;
vertices[index++] = coordinates[offset3];
vertices[index++] = coordinates[offset3 + 1];
size_t offset1 = ((startRadial + radial) % common::MAX_RADIALS *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
size_t offset2 = offset1 + gateSize * 2;
size_t offset3 =
(((startRadial + radial + 1) % common::MAX_RADIALS) *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
size_t offset4 = offset3 + gateSize * 2;
vertices[index++] = coordinates[offset4];
vertices[index++] = coordinates[offset4 + 1];
vertices[index++] = coordinates[offset1];
vertices[index++] = coordinates[offset1 + 1];
vertices[index++] = coordinates[offset2];
vertices[index++] = coordinates[offset2 + 1];
vertices[index++] = coordinates[offset2];
vertices[index++] = coordinates[offset2 + 1];
vertices[index++] = coordinates[offset3];
vertices[index++] = coordinates[offset3 + 1];
vertices[index++] = coordinates[offset3];
vertices[index++] = coordinates[offset3 + 1];
vertices[index++] = coordinates[offset4];
vertices[index++] = coordinates[offset4 + 1];
vertices[index++] = coordinates[offset2];
vertices[index++] = coordinates[offset2 + 1];
}
else
{
const uint16_t baseCoord = gate;
size_t offset1 = ((startRadial + radial) % common::MAX_RADIALS *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
size_t offset2 =
(((startRadial + radial + 1) % common::MAX_RADIALS) *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
// TODO: Radar location
vertices[index++] = 38.6986f;
vertices[index++] = -90.6828f;
vertices[index++] = coordinates[offset1];
vertices[index++] = coordinates[offset1 + 1];
vertices[index++] = coordinates[offset2];
vertices[index++] = coordinates[offset2 + 1];
}
}
}
vertices.resize(index);
timer.stop();
BOOST_LOG_TRIVIAL(debug)
<< logPrefix_ << "Vertices calculated in " << timer.format(6, "%ws");