mirror of
				https://github.com/ciphervance/supercell-wx.git
				synced 2025-10-31 02:00:05 +00:00 
			
		
		
		
	Changed code to find a distance, useful for both in range and general distance.
This commit is contained in:
		
							parent
							
								
									1a37dbff27
								
							
						
					
					
						commit
						b421251bcd
					
				
					 2 changed files with 122 additions and 103 deletions
				
			
		|  | @ -31,6 +31,40 @@ const ::GeographicLib::Geodesic& DefaultGeodesic() | |||
|    return geodesic_; | ||||
| } | ||||
| 
 | ||||
| bool GnomonicAreaContainsCenter(geos::geom::CoordinateSequence sequence) | ||||
| { | ||||
| 
 | ||||
|    // Cannot have an area with just two points
 | ||||
|    if (sequence.size() <= 2 || | ||||
|        (sequence.size() == 3 && sequence.front() == sequence.back())) | ||||
|    { | ||||
|       return false; | ||||
|    } | ||||
|    bool areaContainsPoint = false; | ||||
|    geos::geom::CoordinateXY zero {}; | ||||
|    // If the sequence is not a ring, add the first point again for closure
 | ||||
|    if (!sequence.isRing()) | ||||
|    { | ||||
|       sequence.add(sequence.front(), false); | ||||
|    } | ||||
| 
 | ||||
|    // The sequence should be a ring at this point, but make sure
 | ||||
|    if (sequence.isRing()) | ||||
|    { | ||||
|       try | ||||
|       { | ||||
|          areaContainsPoint = | ||||
|             geos::algorithm::PointLocation::isInRing(zero, &sequence); | ||||
|       } | ||||
|       catch (const std::exception&) | ||||
|       { | ||||
|          logger_->trace("Invalid area sequence"); | ||||
|       } | ||||
|    } | ||||
| 
 | ||||
|    return areaContainsPoint; | ||||
| } | ||||
| 
 | ||||
| bool AreaContainsPoint(const std::vector<common::Coordinate>& area, | ||||
|                        const common::Coordinate&              point) | ||||
| { | ||||
|  | @ -146,60 +180,42 @@ GetDistance(double lat1, double lon1, double lat2, double lon2) | |||
|    return units::length::meters<double> {distance}; | ||||
| } | ||||
| 
 | ||||
| bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | ||||
|                         const common::Coordinate&              point, | ||||
|                         const units::length::meters<double>    distance) | ||||
| /*
 | ||||
|  * Uses the gnomonic projection to determine if the area is in the radius. | ||||
|  * | ||||
|  * The basic algorithm is as follows: | ||||
|  *    - Get a gnomonic projection centered on the point of the area | ||||
|  *    - Find the point on the area which is closest to the center | ||||
|  *    - Convert the closest point back to latitude and longitude. | ||||
|  *    - Find the distance form the closest point to the point. | ||||
|  * | ||||
|  * The first property needed to make this work is that great circles become | ||||
|  * lines in the projection, which allows the area to be converted to strait | ||||
|  * lines. This is generally true for gnomic projections. | ||||
|  * | ||||
|  * The second property needed to make this work is that a point further away | ||||
|  * on the geodesic must be further away on the projection. This means that | ||||
|  * the closes point on the projection is also the closest point on the geodesic. | ||||
|  * This holds for spherical geodesics and is an approximation non spherical | ||||
|  * geodesics. | ||||
|  * | ||||
|  * This algorithm only works if the area is fully on the hemisphere centered | ||||
|  * on the point. Otherwise, this falls back to centroid based distances. | ||||
|  * | ||||
|  * If the point is inside the area, 0 is always returned. | ||||
|  */ | ||||
| units::length::meters<double> | ||||
| GetDistanceAreaPoint(const std::vector<common::Coordinate>& area, | ||||
|                      const common::Coordinate&              point) | ||||
| { | ||||
|    /*
 | ||||
|    Uses the gnomonic projection to determine if the area is in the radius. | ||||
| 
 | ||||
|    The first property needed to make this work is that great circles become | ||||
|    lines in the projection. | ||||
|    The other key property needed to make this work is described bellow | ||||
|       R1 and R2 are the distances from the center point to two points | ||||
|       on the (non-flat) Earth. | ||||
|       R1' and R2' are the distances from the center point to the same | ||||
|       two points in the gnomonic projection. | ||||
|       if R1 > R2 then | ||||
|          R1' > R2' | ||||
|       else if R1 < R2 then | ||||
|          R1' < R2' | ||||
|       else if R1 == R2 then | ||||
|          R1' == R2' | ||||
| 
 | ||||
|       This can also be written as: | ||||
|       r(d) is a function that takes the distance on Earth and converts it to a | ||||
|       distance on the projection. | ||||
|       R1' = r(R1), R2' = r(R2) | ||||
|       r(d) is increasing | ||||
| 
 | ||||
|    In this case, R1 is a point the radius away from the center, and R2 is a | ||||
|    (all of the) point(s) on the edge of the area. This means that if the edge | ||||
|    is in the radius R1' on the projection, it is in the radius R1 on the Earth. | ||||
| 
 | ||||
|    On a spherical geodesic this works fine. R is the radius of Earth. We are | ||||
|    also only concerned with points less than a hemisphere away, therefore | ||||
|    0 < R1,R2 < pi/2 * R (quarter of circumference because the point is in the | ||||
|    center of the hemisphere) | ||||
|       r(d) = R * tan(d / R) {0 < d < pi/2 * R} | ||||
|       tan(d / R) is increasing for {0 < d < pi/2 * R} | ||||
| 
 | ||||
|    On non spherical geodesics, this may not work perfectly, but should be a | ||||
|    close approximation. | ||||
|    */ | ||||
|    // Cannot have an area with just two points
 | ||||
|    if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back())) | ||||
|    { | ||||
|       return false; | ||||
|    } | ||||
| 
 | ||||
|    // Ensure that the same geodesic is used here as is for the radius
 | ||||
|    // Ensure that the same geodesic is used here as is for the distance
 | ||||
|    // calculation
 | ||||
|    ::GeographicLib::Gnomonic gnomonic = | ||||
|       ::GeographicLib::Gnomonic(DefaultGeodesic()); | ||||
|    geos::geom::CoordinateSequence sequence {}; | ||||
|    double                         x; | ||||
|    double                         y; | ||||
|    bool                           useCentroid = false; | ||||
| 
 | ||||
|    // Using a gnomonic projection with the test point as the center
 | ||||
|    // latitude/longitude, the projected test point will be at (0, 0)
 | ||||
|  | @ -214,73 +230,64 @@ bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | |||
|                        areaCoordinate.longitude_, | ||||
|                        x, | ||||
|                        y); | ||||
|       // Check if the current point is the hemisphere centered on the point
 | ||||
|       // Check if the current point is in the hemisphere centered on the point
 | ||||
|       // if not, fall back to using centroid.
 | ||||
|       if (std::isnan(x) || std::isnan(y)) | ||||
|       { | ||||
|          return false; | ||||
|          useCentroid = true; | ||||
|       } | ||||
|       sequence.add(x, y); | ||||
|    } | ||||
| 
 | ||||
|    // get a point on the circle with the radius of the range in lat lon.
 | ||||
|    // Has the point be in the general direction of the area, which may help with
 | ||||
|    // non spherical geodesics
 | ||||
|    units::angle::degrees<double> angle = GetAngle( | ||||
|       point.latitude_, point.longitude_, area[0].latitude_, area[0].longitude_); | ||||
|    common::Coordinate radiusPoint = GetCoordinate(point, angle, distance); | ||||
|    // get the radius in gnomonic projection
 | ||||
|    gnomonic.Forward(point.latitude_, | ||||
|                     point.longitude_, | ||||
|                     radiusPoint.latitude_, | ||||
|                     radiusPoint.longitude_, | ||||
|                     x, | ||||
|                     y); | ||||
|    // radius is greater than quarter circumference of the Earth, but the area
 | ||||
|    // is closer, so it is in range.
 | ||||
|    if (std::isnan(x) || std::isnan(y)) | ||||
|    units::length::meters<double> distance; | ||||
| 
 | ||||
|    if (useCentroid) | ||||
|    { | ||||
|       return true; | ||||
|       common::Coordinate centroid = common::GetCentroid(area); | ||||
|       distance = GetDistance(point.latitude_, | ||||
|                              point.longitude_, | ||||
|                              centroid.latitude_, | ||||
|                              centroid.longitude_); | ||||
|    } | ||||
|    double gnomonicRadius = std::sqrt(x * x + y * y); | ||||
| 
 | ||||
|    // If the sequence is not a ring, add the first point again for closure
 | ||||
|    if (!sequence.isRing()) | ||||
|    else if (GnomonicAreaContainsCenter(sequence)) | ||||
|    { | ||||
|       sequence.add(sequence.front(), false); | ||||
|       distance = units::length::meters<double>(0); | ||||
|    } | ||||
| 
 | ||||
|    // The sequence should be a ring at this point, but make sure
 | ||||
|    if (sequence.isRing()) | ||||
|    else | ||||
|    { | ||||
|       try | ||||
|       { | ||||
|          if (geos::algorithm::PointLocation::isInRing(zero, &sequence)) | ||||
|          { | ||||
|             return true; | ||||
|          } | ||||
|          else if (distance > units::length::meters<double>(0)) | ||||
|          { | ||||
|             // Calculate the distance the area is from the point via conversion
 | ||||
|             // to a polygon.
 | ||||
|             auto geometryFactory = | ||||
|                geos::geom::GeometryFactory::getDefaultInstance(); | ||||
|             auto linearRing = geometryFactory->createLinearRing(sequence); | ||||
|             auto polygon = | ||||
|                geometryFactory->createPolygon(std::move(linearRing)); | ||||
|       // Get the closes point on the geometry
 | ||||
|       auto geometryFactory = geos::geom::GeometryFactory::getDefaultInstance(); | ||||
|       auto lineString      = geometryFactory->createLineString(sequence); | ||||
| 
 | ||||
|             geos::algorithm::distance::PointPairDistance distancePair; | ||||
|             geos::algorithm::distance::DistanceToPoint::computeDistance( | ||||
|                *polygon, zero, distancePair); | ||||
|             return gnomonicRadius >= distancePair.getDistance(); | ||||
|          } | ||||
|       } | ||||
|       catch (const std::exception&) | ||||
|       { | ||||
|          logger_->trace("Invalid area sequence"); | ||||
|       } | ||||
|       geos::algorithm::distance::PointPairDistance distancePair; | ||||
|       geos::algorithm::distance::DistanceToPoint::computeDistance( | ||||
|          *lineString, zero, distancePair); | ||||
| 
 | ||||
|       geos::geom::CoordinateXY closestPoint = distancePair.getCoordinate(0); | ||||
| 
 | ||||
|       double closestLat; | ||||
|       double closestLon; | ||||
| 
 | ||||
|       gnomonic.Reverse(point.latitude_, | ||||
|                        point.longitude_, | ||||
|                        closestPoint.x, | ||||
|                        closestPoint.y, | ||||
|                        closestLat, | ||||
|                        closestLon); | ||||
| 
 | ||||
|       distance = GetDistance(point.latitude_, | ||||
|                              point.longitude_, | ||||
|                              closestLat, | ||||
|                              closestLon); | ||||
|    } | ||||
|    return distance; | ||||
| } | ||||
| 
 | ||||
|    return false; | ||||
| bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area, | ||||
|                         const common::Coordinate&              point, | ||||
|                         const units::length::meters<double>    distance) | ||||
| { | ||||
|     return GetDistanceAreaPoint(area, point) <= distance; | ||||
| } | ||||
| 
 | ||||
| } // namespace GeographicLib
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 AdenKoperczak
						AdenKoperczak