#include #include #include #include #include #include #include #include #include namespace scwx { namespace qt { namespace view { static const std::string logPrefix_ = "scwx::qt::view::level3_radial_view"; static const auto logger_ = scwx::util::Logger::Create(logPrefix_); static constexpr uint16_t RANGE_FOLDED = 1u; static constexpr uint32_t VERTICES_PER_BIN = 6u; static constexpr uint32_t VALUES_PER_VERTEX = 2u; class Level3RadialViewImpl { public: explicit Level3RadialViewImpl() : selectedTime_ {}, latitude_ {}, longitude_ {}, range_ {}, vcp_ {}, sweepTime_ {} { } ~Level3RadialViewImpl() = default; std::chrono::system_clock::time_point selectedTime_; std::vector vertices_; std::vector dataMoments8_; float latitude_; float longitude_; float range_; uint16_t vcp_; std::chrono::system_clock::time_point sweepTime_; }; Level3RadialView::Level3RadialView( const std::string& product, std::shared_ptr radarProductManager) : Level3ProductView(product, radarProductManager), p(std::make_unique()) { } Level3RadialView::~Level3RadialView() = default; float Level3RadialView::range() const { return p->range_; } std::chrono::system_clock::time_point Level3RadialView::sweep_time() const { return p->sweepTime_; } uint16_t Level3RadialView::vcp() const { return p->vcp_; } const std::vector& Level3RadialView::vertices() const { return p->vertices_; } std::tuple Level3RadialView::GetMomentData() const { const void* data; size_t dataSize; size_t componentSize; data = p->dataMoments8_.data(); dataSize = p->dataMoments8_.size() * sizeof(uint8_t); componentSize = 1; return std::tie(data, dataSize, componentSize); } void Level3RadialView::SelectTime(std::chrono::system_clock::time_point time) { p->selectedTime_ = time; } void Level3RadialView::ComputeSweep() { logger_->debug("ComputeSweep()"); boost::timer::cpu_timer timer; std::scoped_lock sweepLock(sweep_mutex()); std::shared_ptr radarProductManager = radar_product_manager(); // Retrieve message from Radar Product Manager std::shared_ptr message = radarProductManager->GetLevel3Data(GetRadarProductName(), p->selectedTime_); if (message == nullptr) { logger_->debug("Level 3 data not found"); return; } // A message with radial data should be a Graphic Product Message std::shared_ptr gpm = std::dynamic_pointer_cast(message); if (gpm == nullptr) { logger_->warn("Graphic Product Message not found"); return; } else if (gpm == graphic_product_message()) { // Skip if this is the message we previously processed return; } set_graphic_product_message(gpm); // A message with radial data should have a Product Description Block and // Product Symbology Block std::shared_ptr descriptionBlock = message->description_block(); std::shared_ptr symbologyBlock = gpm->symbology_block(); if (descriptionBlock == nullptr || symbologyBlock == nullptr) { logger_->warn("Missing blocks"); return; } // A valid message should have a positive number of layers uint16_t numberOfLayers = symbologyBlock->number_of_layers(); if (numberOfLayers < 1) { logger_->warn("No layers present in symbology block"); return; } // A message with radial data should either have a Digital Radial Data Array // Packet, or a Radial Data Array Packet (TODO) std::shared_ptr digitalDataPacket = nullptr; std::shared_ptr radialDataPacket = nullptr; std::shared_ptr radialData = nullptr; for (uint16_t layer = 0; layer < numberOfLayers; layer++) { std::vector> packetList = symbologyBlock->packet_list(layer); for (auto it = packetList.begin(); it != packetList.end(); it++) { // Prefer Digital Radial Data to Radial Data digitalDataPacket = std::dynamic_pointer_cast< wsr88d::rpg::DigitalRadialDataArrayPacket>(*it); if (digitalDataPacket != nullptr) { break; } // Otherwise, check for Radial Data if (radialDataPacket == nullptr) { radialDataPacket = std::dynamic_pointer_cast(*it); } } if (digitalDataPacket != nullptr) { break; } } if (digitalDataPacket != nullptr) { radialData = digitalDataPacket; } else if (radialDataPacket != nullptr) { radialData = radialDataPacket; } else { logger_->debug("No radial data found"); return; } // Assume the number of radials should be 360 or 720 const size_t radials = radialData->number_of_radials(); if (radials != 360 && radials != 720) { logger_->warn("Unsupported number of radials: {}", radials); return; } const common::RadialSize radialSize = (radials == common::MAX_0_5_DEGREE_RADIALS) ? common::RadialSize::_0_5Degree : common::RadialSize::_1Degree; const std::vector& coordinates = radarProductManager->coordinates(radialSize); // There should be a positive number of range bins in radial data const uint16_t gates = radialData->number_of_range_bins(); if (gates < 1) { logger_->warn("No range bins in radial data"); return; } p->latitude_ = descriptionBlock->latitude_of_radar(); p->longitude_ = descriptionBlock->longitude_of_radar(); p->range_ = descriptionBlock->range(); p->sweepTime_ = util::TimePoint(descriptionBlock->volume_scan_date(), descriptionBlock->volume_scan_start_time() * 1000); p->vcp_ = descriptionBlock->volume_coverage_pattern(); // Calculate vertices timer.start(); // Setup vertex vector std::vector& vertices = p->vertices_; size_t vIndex = 0; vertices.clear(); vertices.resize(radials * gates * VERTICES_PER_BIN * VALUES_PER_VERTEX); // Setup data moment vector std::vector& dataMoments8 = p->dataMoments8_; size_t mIndex = 0; dataMoments8.resize(radials * gates * VERTICES_PER_BIN); // Compute threshold at which to display an individual bin const uint16_t snrThreshold = descriptionBlock->threshold(); // Determine which radial to start at const float radialMultiplier = radials / 360.0f; const float startAngle = radialData->start_angle(0); const uint16_t startRadial = std::lroundf(startAngle * radialMultiplier); for (uint16_t radial = 0; radial < radialData->number_of_radials(); radial++) { const auto dataMomentsArray8 = radialData->level(radial); // Compute gate interval const uint16_t dataMomentInterval = descriptionBlock->x_resolution_raw(); // Compute gate size (number of base gates per bin) const uint16_t gateSize = std::max( 1, dataMomentInterval / static_cast(radarProductManager->gate_size())); // Compute gate range [startGate, endGate) const uint16_t startGate = 0; const uint16_t endGate = std::min( startGate + gates * gateSize, common::MAX_DATA_MOMENT_GATES); for (uint16_t gate = startGate, i = 0; gate + gateSize <= endGate; gate += gateSize, ++i) { size_t vertexCount = (gate > 0) ? 6 : 3; // Store data moment value uint8_t dataValue = (i < dataMomentsArray8.size()) ? dataMomentsArray8[i] : 0; if (dataValue < snrThreshold && dataValue != RANGE_FOLDED) { continue; } for (size_t m = 0; m < vertexCount; m++) { dataMoments8[mIndex++] = dataValue; } // Store vertices if (gate > 0) { const uint16_t baseCoord = gate - 1; size_t offset1 = ((startRadial + radial) % radials * common::MAX_DATA_MOMENT_GATES + baseCoord) * 2; size_t offset2 = offset1 + gateSize * 2; size_t offset3 = (((startRadial + radial + 1) % radials) * common::MAX_DATA_MOMENT_GATES + baseCoord) * 2; size_t offset4 = offset3 + gateSize * 2; vertices[vIndex++] = coordinates[offset1]; vertices[vIndex++] = coordinates[offset1 + 1]; vertices[vIndex++] = coordinates[offset2]; vertices[vIndex++] = coordinates[offset2 + 1]; vertices[vIndex++] = coordinates[offset3]; vertices[vIndex++] = coordinates[offset3 + 1]; vertices[vIndex++] = coordinates[offset3]; vertices[vIndex++] = coordinates[offset3 + 1]; vertices[vIndex++] = coordinates[offset4]; vertices[vIndex++] = coordinates[offset4 + 1]; vertices[vIndex++] = coordinates[offset2]; vertices[vIndex++] = coordinates[offset2 + 1]; vertexCount = 6; } else { const uint16_t baseCoord = gate; size_t offset1 = ((startRadial + radial) % radials * common::MAX_DATA_MOMENT_GATES + baseCoord) * 2; size_t offset2 = (((startRadial + radial + 1) % radials) * common::MAX_DATA_MOMENT_GATES + baseCoord) * 2; vertices[vIndex++] = p->latitude_; vertices[vIndex++] = p->longitude_; vertices[vIndex++] = coordinates[offset1]; vertices[vIndex++] = coordinates[offset1 + 1]; vertices[vIndex++] = coordinates[offset2]; vertices[vIndex++] = coordinates[offset2 + 1]; vertexCount = 3; } } } vertices.resize(vIndex); vertices.shrink_to_fit(); dataMoments8.resize(mIndex); dataMoments8.shrink_to_fit(); timer.stop(); logger_->debug("Vertices calculated in {}", timer.format(6, "%ws")); UpdateColorTable(); emit SweepComputed(); } std::shared_ptr Level3RadialView::Create( const std::string& product, std::shared_ptr radarProductManager) { return std::make_shared(product, radarProductManager); } } // namespace view } // namespace qt } // namespace scwx