mirror of
				https://github.com/ciphervance/supercell-wx.git
				synced 2025-11-03 19:10:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			295 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			295 lines
		
	
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <scwx/qt/util/geographic_lib.hpp>
 | 
						|
#include <scwx/util/logger.hpp>
 | 
						|
 | 
						|
#include <numbers>
 | 
						|
 | 
						|
#include <GeographicLib/Gnomonic.hpp>
 | 
						|
#include <geos/algorithm/PointLocation.h>
 | 
						|
#include <geos/operation/distance/DistanceOp.h>
 | 
						|
#include <geos/geom/CoordinateSequence.h>
 | 
						|
#include <geos/geom/GeometryFactory.h>
 | 
						|
 | 
						|
namespace scwx
 | 
						|
{
 | 
						|
namespace qt
 | 
						|
{
 | 
						|
namespace util
 | 
						|
{
 | 
						|
namespace GeographicLib
 | 
						|
{
 | 
						|
 | 
						|
static const std::string logPrefix_ = "scwx::qt::util::geographic_lib";
 | 
						|
static const auto        logger_    = scwx::util::Logger::Create(logPrefix_);
 | 
						|
 | 
						|
const ::GeographicLib::Geodesic& DefaultGeodesic()
 | 
						|
{
 | 
						|
   static const ::GeographicLib::Geodesic geodesic_ {
 | 
						|
      ::GeographicLib::Constants::WGS84_a(),
 | 
						|
      ::GeographicLib::Constants::WGS84_f()};
 | 
						|
 | 
						|
   return geodesic_;
 | 
						|
}
 | 
						|
 | 
						|
bool GnomonicAreaContainsCenter(geos::geom::CoordinateSequence sequence)
 | 
						|
{
 | 
						|
 | 
						|
   // Cannot have an area with just two points
 | 
						|
   if (sequence.size() <= 2 ||
 | 
						|
       (sequence.size() == 3 && sequence.front() == sequence.back()))
 | 
						|
   {
 | 
						|
      return false;
 | 
						|
   }
 | 
						|
   bool areaContainsPoint = false;
 | 
						|
   geos::geom::CoordinateXY zero {};
 | 
						|
   // If the sequence is not a ring, add the first point again for closure
 | 
						|
   if (!sequence.isRing())
 | 
						|
   {
 | 
						|
      sequence.add(sequence.front(), false);
 | 
						|
   }
 | 
						|
 | 
						|
   // The sequence should be a ring at this point, but make sure
 | 
						|
   if (sequence.isRing())
 | 
						|
   {
 | 
						|
      try
 | 
						|
      {
 | 
						|
         areaContainsPoint =
 | 
						|
            geos::algorithm::PointLocation::isInRing(zero, &sequence);
 | 
						|
      }
 | 
						|
      catch (const std::exception& ex)
 | 
						|
      {
 | 
						|
         logger_->warn("Invalid area sequence. {}", ex.what());
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   return areaContainsPoint;
 | 
						|
}
 | 
						|
 | 
						|
bool AreaContainsPoint(const std::vector<common::Coordinate>& area,
 | 
						|
                       const common::Coordinate&              point)
 | 
						|
{
 | 
						|
   // Cannot have an area with just two points
 | 
						|
   if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back()))
 | 
						|
   {
 | 
						|
      return false;
 | 
						|
   }
 | 
						|
 | 
						|
   ::GeographicLib::Gnomonic      gnomonic {};
 | 
						|
   geos::geom::CoordinateSequence sequence {};
 | 
						|
   double                         x;
 | 
						|
   double                         y;
 | 
						|
   bool                           areaContainsPoint = false;
 | 
						|
 | 
						|
   // Using a gnomonic projection with the test point as the center
 | 
						|
   // latitude/longitude, the projected test point will be at (0, 0)
 | 
						|
   geos::geom::CoordinateXY zero {};
 | 
						|
 | 
						|
   // Create the area coordinate sequence using a gnomonic projection
 | 
						|
   for (auto& areaCoordinate : area)
 | 
						|
   {
 | 
						|
      gnomonic.Forward(point.latitude_,
 | 
						|
                       point.longitude_,
 | 
						|
                       areaCoordinate.latitude_,
 | 
						|
                       areaCoordinate.longitude_,
 | 
						|
                       x,
 | 
						|
                       y);
 | 
						|
      sequence.add(x, y);
 | 
						|
   }
 | 
						|
 | 
						|
   // If the sequence is not a ring, add the first point again for closure
 | 
						|
   if (!sequence.isRing())
 | 
						|
   {
 | 
						|
      sequence.add(sequence.front(), false);
 | 
						|
   }
 | 
						|
 | 
						|
   // The sequence should be a ring at this point, but make sure
 | 
						|
   if (sequence.isRing())
 | 
						|
   {
 | 
						|
      try
 | 
						|
      {
 | 
						|
         areaContainsPoint =
 | 
						|
            geos::algorithm::PointLocation::isInRing(zero, &sequence);
 | 
						|
      }
 | 
						|
      catch (const std::exception&)
 | 
						|
      {
 | 
						|
         logger_->trace("Invalid area sequence");
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   return areaContainsPoint;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
units::angle::degrees<double>
 | 
						|
GetAngle(double lat1, double lon1, double lat2, double lon2)
 | 
						|
{
 | 
						|
   double azi1;
 | 
						|
   double azi2;
 | 
						|
   DefaultGeodesic().Inverse(lat1, lon1, lat2, lon2, azi1, azi2);
 | 
						|
 | 
						|
   return units::angle::degrees<double> {azi1};
 | 
						|
}
 | 
						|
 | 
						|
common::Coordinate GetCoordinate(const common::Coordinate&     center,
 | 
						|
                                 units::angle::degrees<double> angle,
 | 
						|
                                 units::length::meters<double> distance)
 | 
						|
{
 | 
						|
   double latitude;
 | 
						|
   double longitude;
 | 
						|
 | 
						|
   DefaultGeodesic().Direct(center.latitude_,
 | 
						|
                            center.longitude_,
 | 
						|
                            angle.value(),
 | 
						|
                            distance.value(),
 | 
						|
                            latitude,
 | 
						|
                            longitude);
 | 
						|
 | 
						|
   return {latitude, longitude};
 | 
						|
}
 | 
						|
 | 
						|
common::Coordinate GetCoordinate(const common::Coordinate& center,
 | 
						|
                                 units::meters<double>     i,
 | 
						|
                                 units::meters<double>     j)
 | 
						|
{
 | 
						|
   // Calculate polar coordinates based on i and j
 | 
						|
   const double angle =
 | 
						|
      std::atan2(i.value(), j.value()) * 180.0 / std::numbers::pi;
 | 
						|
   const double range =
 | 
						|
      std::sqrt(i.value() * i.value() + j.value() * j.value());
 | 
						|
 | 
						|
   double latitude;
 | 
						|
   double longitude;
 | 
						|
 | 
						|
   DefaultGeodesic().Direct(
 | 
						|
      center.latitude_, center.longitude_, angle, range, latitude, longitude);
 | 
						|
 | 
						|
   return {latitude, longitude};
 | 
						|
}
 | 
						|
 | 
						|
units::length::meters<double>
 | 
						|
GetDistance(double lat1, double lon1, double lat2, double lon2)
 | 
						|
{
 | 
						|
   double distance;
 | 
						|
   DefaultGeodesic().Inverse(lat1, lon1, lat2, lon2, distance);
 | 
						|
 | 
						|
   return units::length::meters<double> {distance};
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Uses the gnomonic projection to determine if the area is in the radius.
 | 
						|
 *
 | 
						|
 * The basic algorithm is as follows:
 | 
						|
 *    - Get a gnomonic projection centered on the point of the area
 | 
						|
 *    - Find the point on the area which is closest to the center
 | 
						|
 *    - Convert the closest point back to latitude and longitude.
 | 
						|
 *    - Find the distance form the closest point to the point.
 | 
						|
 *
 | 
						|
 * The first property needed to make this work is that great circles become
 | 
						|
 * lines in the projection, which allows the area to be converted to strait
 | 
						|
 * lines. This is generally true for gnomic projections.
 | 
						|
 *
 | 
						|
 * The second property needed to make this work is that a point further away
 | 
						|
 * on the geodesic must be further away on the projection. This means that
 | 
						|
 * the closes point on the projection is also the closest point on the geodesic.
 | 
						|
 * This holds for spherical geodesics and is an approximation non spherical
 | 
						|
 * geodesics.
 | 
						|
 *
 | 
						|
 * This algorithm only works if the area is fully on the hemisphere centered
 | 
						|
 * on the point. Otherwise, this falls back to centroid based distances.
 | 
						|
 *
 | 
						|
 * If the point is inside the area, 0 is always returned.
 | 
						|
 */
 | 
						|
units::length::meters<double>
 | 
						|
GetDistanceAreaPoint(const std::vector<common::Coordinate>& area,
 | 
						|
                     const common::Coordinate&              point)
 | 
						|
{
 | 
						|
   // Ensure that the same geodesic is used here as is for the distance
 | 
						|
   // calculation
 | 
						|
   ::GeographicLib::Gnomonic gnomonic =
 | 
						|
      ::GeographicLib::Gnomonic(DefaultGeodesic());
 | 
						|
   geos::geom::CoordinateSequence sequence {};
 | 
						|
   double                         x;
 | 
						|
   double                         y;
 | 
						|
   bool                           useCentroid = false;
 | 
						|
 | 
						|
   // Using a gnomonic projection with the test point as the center
 | 
						|
   // latitude/longitude, the projected test point will be at (0, 0)
 | 
						|
   geos::geom::CoordinateXY zero {};
 | 
						|
 | 
						|
   // Create the area coordinate sequence using a gnomonic projection
 | 
						|
   for (auto& areaCoordinate : area)
 | 
						|
   {
 | 
						|
      gnomonic.Forward(point.latitude_,
 | 
						|
                       point.longitude_,
 | 
						|
                       areaCoordinate.latitude_,
 | 
						|
                       areaCoordinate.longitude_,
 | 
						|
                       x,
 | 
						|
                       y);
 | 
						|
      // Check if the current point is in the hemisphere centered on the point
 | 
						|
      // if not, fall back to using centroid.
 | 
						|
      if (std::isnan(x) || std::isnan(y))
 | 
						|
      {
 | 
						|
         useCentroid = true;
 | 
						|
      }
 | 
						|
      sequence.add(x, y);
 | 
						|
   }
 | 
						|
 | 
						|
   units::length::meters<double> distance;
 | 
						|
 | 
						|
   if (useCentroid)
 | 
						|
   {
 | 
						|
      common::Coordinate centroid = common::GetCentroid(area);
 | 
						|
      distance = GetDistance(point.latitude_,
 | 
						|
                             point.longitude_,
 | 
						|
                             centroid.latitude_,
 | 
						|
                             centroid.longitude_);
 | 
						|
   }
 | 
						|
   else if (GnomonicAreaContainsCenter(sequence))
 | 
						|
   {
 | 
						|
      distance = units::length::meters<double>(0);
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
      // Get the closes point on the geometry
 | 
						|
      auto geometryFactory = geos::geom::GeometryFactory::getDefaultInstance();
 | 
						|
      auto lineString      = geometryFactory->createLineString(sequence);
 | 
						|
      auto zeroPoint       = geometryFactory->createPoint(zero);
 | 
						|
 | 
						|
      std::unique_ptr<geos::geom::CoordinateSequence> closestPoints =
 | 
						|
         geos::operation::distance::DistanceOp::nearestPoints(lineString.get(),
 | 
						|
                                                              zeroPoint.get());
 | 
						|
 | 
						|
      double closestLat;
 | 
						|
      double closestLon;
 | 
						|
 | 
						|
      gnomonic.Reverse(point.latitude_,
 | 
						|
                       point.longitude_,
 | 
						|
                       closestPoints->getX(0),
 | 
						|
                       closestPoints->getY(0),
 | 
						|
                       closestLat,
 | 
						|
                       closestLon);
 | 
						|
 | 
						|
      distance = GetDistance(point.latitude_,
 | 
						|
                             point.longitude_,
 | 
						|
                             closestLat,
 | 
						|
                             closestLon);
 | 
						|
 | 
						|
   }
 | 
						|
   return distance;
 | 
						|
}
 | 
						|
 | 
						|
bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
 | 
						|
                        const common::Coordinate&              point,
 | 
						|
                        const units::length::meters<double>    distance)
 | 
						|
{
 | 
						|
    return GetDistanceAreaPoint(area, point) <= distance;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace GeographicLib
 | 
						|
} // namespace util
 | 
						|
} // namespace qt
 | 
						|
} // namespace scwx
 |