supercell-wx/scwx-qt/source/scwx/qt/util/geographic_lib.cpp
2025-05-03 10:24:02 -04:00

315 lines
9.5 KiB
C++

#include <scwx/qt/util/geographic_lib.hpp>
#include <scwx/util/logger.hpp>
#include <numbers>
#include <cmath>
#include <GeographicLib/Gnomonic.hpp>
#include <geos/algorithm/PointLocation.h>
#include <geos/operation/distance/DistanceOp.h>
#include <geos/geom/CoordinateSequence.h>
#include <geos/geom/GeometryFactory.h>
namespace scwx
{
namespace qt
{
namespace util
{
namespace GeographicLib
{
static const std::string logPrefix_ = "scwx::qt::util::geographic_lib";
static const auto logger_ = scwx::util::Logger::Create(logPrefix_);
const ::GeographicLib::Geodesic& DefaultGeodesic()
{
static const ::GeographicLib::Geodesic geodesic_ {
::GeographicLib::Constants::WGS84_a(),
::GeographicLib::Constants::WGS84_f()};
return geodesic_;
}
bool GnomonicAreaContainsCenter(geos::geom::CoordinateSequence sequence)
{
// Cannot have an area with just two points
if (sequence.size() <= 2 ||
(sequence.size() == 3 && sequence.front() == sequence.back()))
{
return false;
}
bool areaContainsPoint = false;
geos::geom::CoordinateXY zero {};
// If the sequence is not a ring, add the first point again for closure
if (!sequence.isRing())
{
sequence.add(sequence.front(), false);
}
// The sequence should be a ring at this point, but make sure
if (sequence.isRing())
{
try
{
areaContainsPoint =
geos::algorithm::PointLocation::isInRing(zero, &sequence);
}
catch (const std::exception& ex)
{
logger_->warn("Invalid area sequence. {}", ex.what());
}
}
return areaContainsPoint;
}
bool AreaContainsPoint(const std::vector<common::Coordinate>& area,
const common::Coordinate& point)
{
// Cannot have an area with just two points
if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back()))
{
return false;
}
::GeographicLib::Gnomonic gnomonic {};
geos::geom::CoordinateSequence sequence {};
double x;
double y;
bool areaContainsPoint = false;
// Using a gnomonic projection with the test point as the center
// latitude/longitude, the projected test point will be at (0, 0)
geos::geom::CoordinateXY zero {};
// Create the area coordinate sequence using a gnomonic projection
for (auto& areaCoordinate : area)
{
gnomonic.Forward(point.latitude_,
point.longitude_,
areaCoordinate.latitude_,
areaCoordinate.longitude_,
x,
y);
sequence.add(x, y);
}
// If the sequence is not a ring, add the first point again for closure
if (!sequence.isRing())
{
sequence.add(sequence.front(), false);
}
// The sequence should be a ring at this point, but make sure
if (sequence.isRing())
{
try
{
areaContainsPoint =
geos::algorithm::PointLocation::isInRing(zero, &sequence);
}
catch (const std::exception&)
{
logger_->trace("Invalid area sequence");
}
}
return areaContainsPoint;
}
units::angle::degrees<double>
GetAngle(double lat1, double lon1, double lat2, double lon2)
{
double azi1;
double azi2;
DefaultGeodesic().Inverse(lat1, lon1, lat2, lon2, azi1, azi2);
return units::angle::degrees<double> {azi1};
}
common::Coordinate GetCoordinate(const common::Coordinate& center,
units::angle::degrees<double> angle,
units::length::meters<double> distance)
{
double latitude;
double longitude;
DefaultGeodesic().Direct(center.latitude_,
center.longitude_,
angle.value(),
distance.value(),
latitude,
longitude);
return {latitude, longitude};
}
common::Coordinate GetCoordinate(const common::Coordinate& center,
units::meters<double> i,
units::meters<double> j)
{
// Calculate polar coordinates based on i and j
const double angle =
std::atan2(i.value(), j.value()) * 180.0 / std::numbers::pi;
const double range =
std::sqrt(i.value() * i.value() + j.value() * j.value());
double latitude;
double longitude;
DefaultGeodesic().Direct(
center.latitude_, center.longitude_, angle, range, latitude, longitude);
return {latitude, longitude};
}
units::length::meters<double>
GetDistance(double lat1, double lon1, double lat2, double lon2)
{
double distance;
DefaultGeodesic().Inverse(lat1, lon1, lat2, lon2, distance);
return units::length::meters<double> {distance};
}
/*
* Uses the gnomonic projection to determine if the area is in the radius.
*
* The basic algorithm is as follows:
* - Get a gnomonic projection centered on the point of the area
* - Find the point on the area which is closest to the center
* - Convert the closest point back to latitude and longitude.
* - Find the distance form the closest point to the point.
*
* The first property needed to make this work is that great circles become
* lines in the projection, which allows the area to be converted to strait
* lines. This is generally true for gnomic projections.
*
* The second property needed to make this work is that a point further away
* on the geodesic must be further away on the projection. This means that
* the closes point on the projection is also the closest point on the geodesic.
* This holds for spherical geodesics and is an approximation non spherical
* geodesics.
*
* This algorithm only works if the area is fully on the hemisphere centered
* on the point. Otherwise, this falls back to centroid based distances.
*
* If the point is inside the area, 0 is always returned.
*/
units::length::meters<double>
GetDistanceAreaPoint(const std::vector<common::Coordinate>& area,
const common::Coordinate& point)
{
// Ensure that the same geodesic is used here as is for the distance
// calculation
::GeographicLib::Gnomonic gnomonic =
::GeographicLib::Gnomonic(DefaultGeodesic());
geos::geom::CoordinateSequence sequence {};
double x;
double y;
bool useCentroid = false;
// Using a gnomonic projection with the test point as the center
// latitude/longitude, the projected test point will be at (0, 0)
geos::geom::CoordinateXY zero {};
// Create the area coordinate sequence using a gnomonic projection
for (auto& areaCoordinate : area)
{
gnomonic.Forward(point.latitude_,
point.longitude_,
areaCoordinate.latitude_,
areaCoordinate.longitude_,
x,
y);
// Check if the current point is in the hemisphere centered on the point
// if not, fall back to using centroid.
if (std::isnan(x) || std::isnan(y))
{
useCentroid = true;
}
sequence.add(x, y);
}
units::length::meters<double> distance;
if (useCentroid)
{
common::Coordinate centroid = common::GetCentroid(area);
distance = GetDistance(point.latitude_,
point.longitude_,
centroid.latitude_,
centroid.longitude_);
}
else if (GnomonicAreaContainsCenter(sequence))
{
distance = units::length::meters<double>(0);
}
else
{
// Get the closes point on the geometry
auto geometryFactory = geos::geom::GeometryFactory::getDefaultInstance();
auto lineString = geometryFactory->createLineString(sequence);
auto zeroPoint = geometryFactory->createPoint(zero);
std::unique_ptr<geos::geom::CoordinateSequence> closestPoints =
geos::operation::distance::DistanceOp::nearestPoints(lineString.get(),
zeroPoint.get());
double closestLat;
double closestLon;
gnomonic.Reverse(point.latitude_,
point.longitude_,
closestPoints->getX(0),
closestPoints->getY(0),
closestLat,
closestLon);
distance = GetDistance(point.latitude_,
point.longitude_,
closestLat,
closestLon);
}
return distance;
}
bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
const common::Coordinate& point,
const units::length::meters<double> distance)
{
return GetDistanceAreaPoint(area, point) <= distance;
}
units::length::meters<double>
GetRadarBeamAltititude(units::length::meters<double> range,
units::angle::degrees<double> elevation,
units::length::meters<double> height)
{
static const units::length::meters<double> earthRadius {6367444 * 4 / 3};
height += earthRadius;
const double elevationRadians =
units::angle::radians<double>(elevation).value();
const auto altitudeSquared =
(range * range + height * height +
2 * range * height * std::sin(elevationRadians));
return units::length::meters<double>(std::sqrt(altitudeSquared.value())) -
earthRadius;
}
} // namespace GeographicLib
} // namespace util
} // namespace qt
} // namespace scwx