supercell-wx/wxdata/source/scwx/wsr88d/rda/digital_radar_data.cpp

606 lines
18 KiB
C++

#include <scwx/wsr88d/rda/digital_radar_data.hpp>
#include <scwx/util/logger.hpp>
namespace scwx
{
namespace wsr88d
{
namespace rda
{
static const std::string logPrefix_ = "scwx::wsr88d::rda::digital_radar_data";
static const auto logger_ = util::Logger::Create(logPrefix_);
// Table III-A Angle Data Format
constexpr float kAngleDataScale = 0.0054931640625f;
// Table III-B Range Format
constexpr float kRangeScale = 0.001f;
class DigitalRadarData::Impl
{
public:
class MomentDataBlock;
explicit Impl() {};
~Impl() = default;
std::uint32_t collectionTime_ {};
std::uint16_t modifiedJulianDate_ {};
std::uint16_t unambiguousRange_ {};
std::uint16_t azimuthAngle_ {};
std::uint16_t azimuthNumber_ {};
std::uint16_t radialStatus_ {};
std::uint16_t elevationAngle_ {};
std::uint16_t elevationNumber_ {};
std::int16_t surveillanceRange_ {};
std::int16_t dopplerRange_ {};
std::uint16_t surveillanceRangeSampleInterval_ {};
std::uint16_t dopplerRangeSampleInterval_ {};
std::uint16_t numberOfSurveillanceBins_ {};
std::uint16_t numberOfDopplerBins_ {};
std::uint16_t cutSectorNumber_ {};
float calibrationConstant_ {};
std::uint16_t surveillancePointer_ {};
std::uint16_t velocityPointer_ {};
std::uint16_t spectralWidthPointer_ {};
std::uint16_t dopplerVelocityResolution_ {};
std::uint16_t vcpNumber_ {};
std::uint16_t nyquistVelocity_ {};
std::uint16_t atmos_ {};
std::uint16_t tover_ {};
std::uint16_t radialSpotBlankingStatus_ {};
std::shared_ptr<MomentDataBlock> reflectivityDataBlock_ {nullptr};
std::shared_ptr<MomentDataBlock> dopplerVelocityDataBlock_ {nullptr};
std::shared_ptr<MomentDataBlock> dopplerSpectrumWidthDataBlock_ {nullptr};
};
class DigitalRadarData::Impl::MomentDataBlock :
public GenericRadarData::MomentDataBlock
{
public:
explicit MomentDataBlock(const DigitalRadarData* self, DataBlockType type);
~MomentDataBlock() = default;
MomentDataBlock(const MomentDataBlock&) = delete;
MomentDataBlock& operator=(const MomentDataBlock&) = delete;
MomentDataBlock(MomentDataBlock&&) noexcept = default;
MomentDataBlock& operator=(MomentDataBlock&&) noexcept = default;
std::uint16_t number_of_data_moment_gates() const;
units::kilometers<float> data_moment_range() const;
std::int16_t data_moment_range_raw() const;
units::kilometers<float> data_moment_range_sample_interval() const;
std::uint16_t data_moment_range_sample_interval_raw() const;
std::int16_t snr_threshold_raw() const;
std::uint8_t data_word_size() const;
float scale() const;
float offset() const;
const void* data_moments() const;
std::vector<std::uint8_t>& data_moment_vector() const;
private:
class Impl;
std::unique_ptr<Impl> p;
};
class DigitalRadarData::Impl::MomentDataBlock::Impl
{
public:
explicit Impl() {};
~Impl() = default;
std::uint16_t numberOfDataMomentGates_ {};
std::int16_t dataMomentRange_ {};
std::uint16_t dataMomentRangeSampleInterval_ {};
float scale_ {};
float offset_ {};
std::vector<std::uint8_t> dataMoments_ {};
};
DigitalRadarData::DigitalRadarData() :
GenericRadarData(), p(std::make_unique<Impl>())
{
}
DigitalRadarData::~DigitalRadarData() = default;
DigitalRadarData::DigitalRadarData(DigitalRadarData&&) noexcept = default;
DigitalRadarData&
DigitalRadarData::operator=(DigitalRadarData&&) noexcept = default;
std::uint32_t DigitalRadarData::collection_time() const
{
return p->collectionTime_;
}
std::uint16_t DigitalRadarData::modified_julian_date() const
{
return p->modifiedJulianDate_;
}
std::uint16_t DigitalRadarData::unambiguous_range() const
{
return p->unambiguousRange_;
}
std::uint16_t DigitalRadarData::azimuth_angle_raw() const
{
return p->azimuthAngle_;
}
units::degrees<float> DigitalRadarData::azimuth_angle() const
{
return units::degrees<float> {p->azimuthAngle_ * kAngleDataScale};
}
std::uint16_t DigitalRadarData::azimuth_number() const
{
return p->azimuthNumber_;
}
std::uint16_t DigitalRadarData::radial_status() const
{
return p->radialStatus_;
}
std::uint16_t DigitalRadarData::elevation_angle_raw() const
{
return p->elevationAngle_;
}
units::degrees<float> DigitalRadarData::elevation_angle() const
{
return units::degrees<float> {p->elevationAngle_ * kAngleDataScale};
}
std::uint16_t DigitalRadarData::elevation_number() const
{
return p->elevationNumber_;
}
std::int16_t DigitalRadarData::surveillance_range_raw() const
{
return p->surveillanceRange_;
}
units::kilometers<float> DigitalRadarData::surveillance_range() const
{
return units::kilometers<float> {p->surveillanceRange_ * kRangeScale};
}
std::int16_t DigitalRadarData::doppler_range_raw() const
{
return p->dopplerRange_;
}
units::kilometers<float> DigitalRadarData::doppler_range() const
{
return units::kilometers<float> {p->dopplerRange_ * kRangeScale};
}
std::uint16_t DigitalRadarData::surveillance_range_sample_interval_raw() const
{
return p->surveillanceRangeSampleInterval_;
}
units::kilometers<float>
DigitalRadarData::surveillance_range_sample_interval() const
{
return units::kilometers<float> {p->surveillanceRangeSampleInterval_ *
kRangeScale};
}
std::uint16_t DigitalRadarData::doppler_range_sample_interval_raw() const
{
return p->dopplerRangeSampleInterval_;
}
units::kilometers<float> DigitalRadarData::doppler_range_sample_interval() const
{
return units::kilometers<float> {p->dopplerRangeSampleInterval_ *
kRangeScale};
}
std::uint16_t DigitalRadarData::number_of_surveillance_bins() const
{
return p->numberOfSurveillanceBins_;
}
std::uint16_t DigitalRadarData::number_of_doppler_bins() const
{
return p->numberOfDopplerBins_;
}
std::uint16_t DigitalRadarData::cut_sector_number() const
{
return p->cutSectorNumber_;
}
float DigitalRadarData::calibration_constant() const
{
return p->calibrationConstant_;
}
std::uint16_t DigitalRadarData::surveillance_pointer() const
{
return p->surveillancePointer_;
}
std::uint16_t DigitalRadarData::velocity_pointer() const
{
return p->velocityPointer_;
}
std::uint16_t DigitalRadarData::spectral_width_pointer() const
{
return p->spectralWidthPointer_;
}
std::uint16_t DigitalRadarData::doppler_velocity_resolution() const
{
return p->dopplerVelocityResolution_;
}
std::uint16_t DigitalRadarData::volume_coverage_pattern_number() const
{
return p->vcpNumber_;
}
std::uint16_t DigitalRadarData::nyquist_velocity() const
{
return p->nyquistVelocity_;
}
std::uint16_t DigitalRadarData::atmos() const
{
return p->atmos_;
}
std::uint16_t DigitalRadarData::tover() const
{
return p->tover_;
}
std::uint16_t DigitalRadarData::radial_spot_blanking_status() const
{
return p->radialSpotBlankingStatus_;
}
std::shared_ptr<GenericRadarData::MomentDataBlock>
DigitalRadarData::moment_data_block(DataBlockType type) const
{
std::shared_ptr<GenericRadarData::MomentDataBlock> block = nullptr;
switch (type)
{
case DataBlockType::MomentRef:
block = p->reflectivityDataBlock_;
break;
case DataBlockType::MomentVel:
block = p->dopplerVelocityDataBlock_;
break;
case DataBlockType::MomentSw:
block = p->dopplerSpectrumWidthDataBlock_;
break;
default:
break;
}
return block;
}
DigitalRadarData::Impl::MomentDataBlock::MomentDataBlock(
const DigitalRadarData* self, DataBlockType type) :
p(std::make_unique<Impl>())
{
switch (type)
{
case DataBlockType::MomentRef:
p->numberOfDataMomentGates_ = self->number_of_surveillance_bins();
p->dataMomentRange_ = self->surveillance_range_raw();
p->dataMomentRangeSampleInterval_ =
self->surveillance_range_sample_interval_raw();
// Table III-E Base Data Scaling
// Rnum = (R / 2) - 33.0
p->scale_ = 2.0f;
p->offset_ = 66.0f; // (33.0 * 2)
break;
case DataBlockType::MomentVel:
p->numberOfDataMomentGates_ = self->number_of_doppler_bins();
p->dataMomentRange_ = self->doppler_range_raw();
p->dataMomentRangeSampleInterval_ =
self->doppler_range_sample_interval_raw();
// Table III-E Base Data Scaling
if (self->doppler_velocity_resolution() == 2) // 2 = 0.5 m/s
{
// Vnum = (V / 2) - 64.5
p->scale_ = 2.0f;
p->offset_ = 129.0f; // (64.5 * 2)
}
else // 4 = 1.0 m/s
{
// Vnum = V - 129.0
p->scale_ = 1.0f;
p->offset_ = 129.0f;
}
break;
case DataBlockType::MomentSw:
p->numberOfDataMomentGates_ = self->number_of_doppler_bins();
p->dataMomentRange_ = self->doppler_range_raw();
p->dataMomentRangeSampleInterval_ =
self->doppler_range_sample_interval_raw();
// Table III-E Base Data Scaling
// SWnum = (SW / 2) - 64.5
p->scale_ = 2.0f;
p->offset_ = 129.0f; // (64.5 * 2)
break;
default:
break;
}
}
std::uint16_t
DigitalRadarData::Impl::MomentDataBlock::number_of_data_moment_gates() const
{
return p->numberOfDataMomentGates_;
}
units::kilometers<float>
DigitalRadarData::Impl::MomentDataBlock::data_moment_range() const
{
return units::kilometers<float> {p->dataMomentRange_ * kRangeScale};
}
std::int16_t
DigitalRadarData::Impl::MomentDataBlock::data_moment_range_raw() const
{
return p->dataMomentRange_;
}
units::kilometers<float>
DigitalRadarData::Impl::MomentDataBlock::data_moment_range_sample_interval()
const
{
return units::kilometers<float> {p->dataMomentRangeSampleInterval_ *
kRangeScale};
}
std::uint16_t
DigitalRadarData::Impl::MomentDataBlock::data_moment_range_sample_interval_raw()
const
{
return p->dataMomentRangeSampleInterval_;
}
std::int16_t DigitalRadarData::Impl::MomentDataBlock::snr_threshold_raw() const
{
// Table III Digital Radar Data (Message Type 1) Note 10:
// Value of 00 (prior to scaling) is Signal Below Threshold, value of 01
// (prior to scaling) is Signal Overlaid
return 2;
}
std::uint8_t DigitalRadarData::Impl::MomentDataBlock::data_word_size() const
{
// Data moments are 8-bit for Digital Radar Data
return 8;
}
float DigitalRadarData::Impl::MomentDataBlock::scale() const
{
return p->scale_;
}
float DigitalRadarData::Impl::MomentDataBlock::offset() const
{
return p->offset_;
}
const void* DigitalRadarData::Impl::MomentDataBlock::data_moments() const
{
return p->dataMoments_.data();
}
std::vector<std::uint8_t>&
DigitalRadarData::Impl::MomentDataBlock::data_moment_vector() const
{
return p->dataMoments_;
}
bool DigitalRadarData::Parse(std::istream& is)
{
logger_->trace("Parsing Digital Radar Data (Message Type 1)");
bool messageValid = true;
std::size_t bytesRead = 0;
std::streampos isBegin = is.tellg();
is.read(reinterpret_cast<char*>(&p->collectionTime_), 4); // 0-3
is.read(reinterpret_cast<char*>(&p->modifiedJulianDate_), 2); // 4-5
is.read(reinterpret_cast<char*>(&p->unambiguousRange_), 2); // 6-7
is.read(reinterpret_cast<char*>(&p->azimuthAngle_), 2); // 8-9
is.read(reinterpret_cast<char*>(&p->azimuthNumber_), 2); // 10-11
is.read(reinterpret_cast<char*>(&p->radialStatus_), 2); // 12-13
is.read(reinterpret_cast<char*>(&p->elevationAngle_), 2); // 14-15
is.read(reinterpret_cast<char*>(&p->elevationNumber_), 2); // 16-17
is.read(reinterpret_cast<char*>(&p->surveillanceRange_), 2); // 18-19
is.read(reinterpret_cast<char*>(&p->dopplerRange_), 2); // 20-21
is.read(reinterpret_cast<char*>(&p->surveillanceRangeSampleInterval_),
2); // 22-23
is.read(reinterpret_cast<char*>(&p->dopplerRangeSampleInterval_),
2); // 24-25
is.read(reinterpret_cast<char*>(&p->numberOfSurveillanceBins_), 2); // 26-27
is.read(reinterpret_cast<char*>(&p->numberOfDopplerBins_), 2); // 28-29
is.read(reinterpret_cast<char*>(&p->cutSectorNumber_), 2); // 30-31
is.read(reinterpret_cast<char*>(&p->calibrationConstant_), 4); // 32-35
is.read(reinterpret_cast<char*>(&p->surveillancePointer_), 2); // 36-37
is.read(reinterpret_cast<char*>(&p->velocityPointer_), 2); // 38-39
is.read(reinterpret_cast<char*>(&p->spectralWidthPointer_), 2); // 40-41
is.read(reinterpret_cast<char*>(&p->dopplerVelocityResolution_), 2); // 42-43
is.read(reinterpret_cast<char*>(&p->vcpNumber_), 2); // 44-45
is.seekg(14, std::ios_base::cur); // 46-59
is.read(reinterpret_cast<char*>(&p->nyquistVelocity_), 2); // 60-61
is.read(reinterpret_cast<char*>(&p->atmos_), 2); // 62-63
is.read(reinterpret_cast<char*>(&p->tover_), 2); // 64-65
is.read(reinterpret_cast<char*>(&p->radialSpotBlankingStatus_), 2); // 66-67
is.seekg(32, std::ios_base::cur); // 68-99
p->collectionTime_ = ntohl(p->collectionTime_);
p->modifiedJulianDate_ = ntohs(p->modifiedJulianDate_);
p->unambiguousRange_ = ntohs(p->unambiguousRange_);
p->azimuthAngle_ = ntohs(p->azimuthAngle_);
p->azimuthNumber_ = ntohs(p->azimuthNumber_);
p->radialStatus_ = ntohs(p->radialStatus_);
p->elevationAngle_ = ntohs(p->elevationAngle_);
p->elevationNumber_ = ntohs(p->elevationNumber_);
p->surveillanceRange_ = ntohs(p->surveillanceRange_);
p->dopplerRange_ = ntohs(p->dopplerRange_);
p->surveillanceRangeSampleInterval_ =
ntohs(p->surveillanceRangeSampleInterval_);
p->dopplerRangeSampleInterval_ = ntohs(p->dopplerRangeSampleInterval_);
p->numberOfSurveillanceBins_ = ntohs(p->numberOfSurveillanceBins_);
p->numberOfDopplerBins_ = ntohs(p->numberOfDopplerBins_);
p->cutSectorNumber_ = ntohs(p->cutSectorNumber_);
p->calibrationConstant_ = SwapFloat(p->calibrationConstant_);
p->surveillancePointer_ = ntohs(p->surveillancePointer_);
p->velocityPointer_ = ntohs(p->velocityPointer_);
p->spectralWidthPointer_ = ntohs(p->spectralWidthPointer_);
p->dopplerVelocityResolution_ = ntohs(p->dopplerVelocityResolution_);
p->vcpNumber_ = ntohs(p->vcpNumber_);
p->nyquistVelocity_ = ntohs(p->nyquistVelocity_);
p->atmos_ = ntohs(p->atmos_);
p->tover_ = ntohs(p->tover_);
p->radialSpotBlankingStatus_ = ntohs(p->radialSpotBlankingStatus_);
if (p->azimuthNumber_ < 1 || p->azimuthNumber_ > 400)
{
logger_->warn("Invalid azimuth number: {}", p->azimuthNumber_);
messageValid = false;
}
if (p->elevationNumber_ < 1 || p->elevationNumber_ > 25)
{
logger_->warn("Invalid elevation number: {}", p->elevationNumber_);
messageValid = false;
}
if (p->numberOfSurveillanceBins_ > 460)
{
logger_->warn("Invalid number of surveillance bins: {}",
p->numberOfSurveillanceBins_);
messageValid = false;
}
if (p->numberOfDopplerBins_ > 920)
{
logger_->warn("Invalid number of doppler bins: {}",
p->numberOfDopplerBins_);
messageValid = false;
}
if (p->surveillancePointer_ != 0 && p->surveillancePointer_ != 100)
{
logger_->warn("Invalid surveillance pointer: {}",
p->surveillancePointer_);
messageValid = false;
}
if (p->velocityPointer_ != 0 &&
(p->velocityPointer_ < 100 || p->velocityPointer_ > 560))
{
logger_->warn("Invalid velocity pointer: {}", p->velocityPointer_);
messageValid = false;
}
if (p->spectralWidthPointer_ != 0 &&
(p->spectralWidthPointer_ < 100 || p->spectralWidthPointer_ > 1480 ||
p->spectralWidthPointer_ > data_size()))
{
logger_->warn("Invalid spectral width pointer: {}",
p->spectralWidthPointer_);
messageValid = false;
}
if (messageValid && p->surveillancePointer_ != 0)
{
p->reflectivityDataBlock_ = std::make_shared<Impl::MomentDataBlock>(
this, DataBlockType::MomentRef);
auto& reflectivity = p->reflectivityDataBlock_->data_moment_vector();
is.seekg(isBegin + std::streamoff(p->surveillancePointer_),
std::ios_base::beg);
reflectivity.resize(p->numberOfSurveillanceBins_);
is.read(reinterpret_cast<char*>(reflectivity.data()),
p->numberOfSurveillanceBins_);
}
if (messageValid && p->velocityPointer_ != 0)
{
p->dopplerVelocityDataBlock_ = std::make_shared<Impl::MomentDataBlock>(
this, DataBlockType::MomentVel);
auto& dopplerVelocity =
p->dopplerVelocityDataBlock_->data_moment_vector();
is.seekg(isBegin + std::streamoff(p->velocityPointer_),
std::ios_base::beg);
dopplerVelocity.resize(p->numberOfDopplerBins_);
is.read(reinterpret_cast<char*>(dopplerVelocity.data()),
p->numberOfDopplerBins_);
}
if (messageValid && p->spectralWidthPointer_ != 0)
{
p->dopplerSpectrumWidthDataBlock_ =
std::make_shared<Impl::MomentDataBlock>(this,
DataBlockType::MomentVel);
auto& dopplerSpectrumWidth =
p->dopplerSpectrumWidthDataBlock_->data_moment_vector();
is.seekg(isBegin + std::streamoff(p->spectralWidthPointer_),
std::ios_base::beg);
dopplerSpectrumWidth.resize(p->numberOfDopplerBins_);
is.read(reinterpret_cast<char*>(dopplerSpectrumWidth.data()),
p->numberOfDopplerBins_);
}
is.seekg(isBegin, std::ios_base::beg);
if (!ValidateMessage(is, bytesRead))
{
messageValid = false;
}
return messageValid;
}
std::shared_ptr<DigitalRadarData>
DigitalRadarData::Create(Level2MessageHeader&& header, std::istream& is)
{
std::shared_ptr<DigitalRadarData> message =
std::make_shared<DigitalRadarData>();
message->set_header(std::move(header));
if (!message->Parse(is))
{
message.reset();
}
return message;
}
} // namespace rda
} // namespace wsr88d
} // namespace scwx