supercell-wx/scwx-qt/source/scwx/qt/view/radar_view.cpp
2021-07-27 00:24:12 -05:00

302 lines
8.9 KiB
C++

#include <scwx/qt/view/radar_view.hpp>
#include <scwx/common/constants.hpp>
#include <boost/log/trivial.hpp>
#include <boost/timer/timer.hpp>
namespace scwx
{
namespace qt
{
namespace view
{
static const std::string logPrefix_ = "[scwx::qt::view::radar_view] ";
static constexpr uint32_t VERTICES_PER_BIN = 6;
static constexpr uint32_t VALUES_PER_VERTEX = 2;
class RadarViewImpl
{
public:
explicit RadarViewImpl(std::shared_ptr<manager::RadarManager> radarManager,
std::shared_ptr<QMapboxGL> map) :
radarManager_(radarManager), map_(map)
{
}
~RadarViewImpl() = default;
std::shared_ptr<manager::RadarManager> radarManager_;
std::shared_ptr<QMapboxGL> map_;
std::vector<float> vertices_;
std::vector<uint8_t> dataMoments8_;
std::vector<uint16_t> dataMoments16_;
};
RadarView::RadarView(std::shared_ptr<manager::RadarManager> radarManager,
std::shared_ptr<QMapboxGL> map) :
p(std::make_unique<RadarViewImpl>(radarManager, map))
{
}
RadarView::~RadarView() = default;
RadarView::RadarView(RadarView&&) noexcept = default;
RadarView& RadarView::operator=(RadarView&&) noexcept = default;
double RadarView::bearing() const
{
return p->map_->bearing();
}
double RadarView::scale() const
{
return p->map_->scale();
}
const std::vector<uint8_t>& RadarView::data_moments8() const
{
return p->dataMoments8_;
}
const std::vector<uint16_t>& RadarView::data_moments16() const
{
return p->dataMoments16_;
}
const std::vector<float>& RadarView::vertices() const
{
return p->vertices_;
}
void RadarView::Initialize()
{
BOOST_LOG_TRIVIAL(debug) << logPrefix_ << "Initialize()";
boost::timer::cpu_timer timer;
// TODO: Pick this based on radar data
const std::vector<float>& coordinates =
p->radarManager_->coordinates(common::RadialSize::_0_5Degree);
std::shared_ptr<const wsr88d::Ar2vFile> level2Data =
p->radarManager_->level2_data();
if (level2Data == nullptr)
{
return;
}
// TODO: Pick these based on view settings
auto radarData = level2Data->radar_data()[0];
wsr88d::rda::DataBlockType blockType = wsr88d::rda::DataBlockType::MomentRef;
// Calculate vertices
timer.start();
auto momentData0 = radarData[0]->moment_data_block(blockType);
// Setup vertex vector
std::vector<float>& vertices = p->vertices_;
const size_t radials = radarData.size();
const uint32_t gates = momentData0->number_of_data_moment_gates();
size_t vIndex = 0;
vertices.clear();
vertices.resize(radials * gates * VERTICES_PER_BIN * VALUES_PER_VERTEX);
// Setup data moment vector
std::vector<uint8_t>& dataMoments8 = p->dataMoments8_;
std::vector<uint16_t>& dataMoments16 = p->dataMoments16_;
size_t mIndex = 0;
if (momentData0->data_word_size() == 8)
{
dataMoments16.resize(0);
dataMoments16.shrink_to_fit();
dataMoments8.resize(radials * gates * VERTICES_PER_BIN);
}
else
{
dataMoments8.resize(0);
dataMoments8.shrink_to_fit();
dataMoments16.resize(radials * gates * VERTICES_PER_BIN);
}
// Compute threshold at which to display an individual bin
const float scale = momentData0->scale();
const float offset = momentData0->offset();
const uint16_t snrThreshold =
std::lroundf(momentData0->snr_threshold_raw() * scale / 10 + offset);
// Azimuth resolution spacing:
// 1 = 0.5 degrees
// 2 = 1.0 degrees
const float radialMultiplier =
2.0f /
std::clamp<int8_t>(radarData[0]->azimuth_resolution_spacing(), 1, 2);
const float startAngle = radarData[0]->azimuth_angle();
const uint16_t startRadial = std::lroundf(startAngle * radialMultiplier);
for (uint16_t radial = 0; radial < radials; ++radial)
{
auto radialData = radarData[radial];
auto momentData = radarData[radial]->moment_data_block(blockType);
if (momentData0->data_word_size() != momentData->data_word_size())
{
BOOST_LOG_TRIVIAL(warning)
<< logPrefix_ << "Radial " << radial << " has different word size";
continue;
}
// Compute gate interval
const uint16_t dataMomentRange = momentData->data_moment_range_raw();
const uint16_t dataMomentInterval =
momentData->data_moment_range_sample_interval_raw();
const uint16_t dataMomentIntervalH = dataMomentInterval / 2;
// Compute gate size (number of base 250m gates per bin)
const uint16_t gateSize = std::max<uint16_t>(1, dataMomentInterval / 250);
// Compute gate range [startGate, endGate)
const uint16_t startGate = (dataMomentRange - dataMomentIntervalH) / 250;
const uint16_t numberOfDataMomentGates =
std::min<uint16_t>(momentData->number_of_data_moment_gates(),
static_cast<uint16_t>(gates));
const uint16_t endGate =
std::min<uint16_t>(startGate + numberOfDataMomentGates * gateSize,
common::MAX_DATA_MOMENT_GATES);
const uint8_t* dataMomentsArray8 = nullptr;
const uint16_t* dataMomentsArray16 = nullptr;
if (momentData->data_word_size() == 8)
{
dataMomentsArray8 =
reinterpret_cast<const uint8_t*>(momentData->data_moments());
}
else
{
dataMomentsArray16 =
reinterpret_cast<const uint16_t*>(momentData->data_moments());
}
for (uint16_t gate = startGate, i = 0; gate + gateSize <= endGate;
gate += gateSize, ++i)
{
size_t vertexCount = (gate > 0) ? 6 : 3;
// Store data moment value
if (dataMomentsArray8 != nullptr)
{
uint8_t dataValue = dataMomentsArray8[i];
if (dataValue < snrThreshold)
{
continue;
}
for (size_t m = 0; m < vertexCount; m++)
{
dataMoments8[mIndex++] = dataMomentsArray8[i];
}
}
else
{
uint16_t dataValue = dataMomentsArray16[i];
if (dataValue < snrThreshold)
{
continue;
}
for (size_t m = 0; m < vertexCount; m++)
{
dataMoments16[mIndex++] = dataMomentsArray16[i];
}
}
// Store vertices
if (gate > 0)
{
const uint16_t baseCoord = gate - 1;
size_t offset1 = ((startRadial + radial) % common::MAX_RADIALS *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
size_t offset2 = offset1 + gateSize * 2;
size_t offset3 =
(((startRadial + radial + 1) % common::MAX_RADIALS) *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
size_t offset4 = offset3 + gateSize * 2;
vertices[vIndex++] = coordinates[offset1];
vertices[vIndex++] = coordinates[offset1 + 1];
vertices[vIndex++] = coordinates[offset2];
vertices[vIndex++] = coordinates[offset2 + 1];
vertices[vIndex++] = coordinates[offset3];
vertices[vIndex++] = coordinates[offset3 + 1];
vertices[vIndex++] = coordinates[offset3];
vertices[vIndex++] = coordinates[offset3 + 1];
vertices[vIndex++] = coordinates[offset4];
vertices[vIndex++] = coordinates[offset4 + 1];
vertices[vIndex++] = coordinates[offset2];
vertices[vIndex++] = coordinates[offset2 + 1];
vertexCount = 6;
}
else
{
const uint16_t baseCoord = gate;
size_t offset1 = ((startRadial + radial) % common::MAX_RADIALS *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
size_t offset2 =
(((startRadial + radial + 1) % common::MAX_RADIALS) *
common::MAX_DATA_MOMENT_GATES +
baseCoord) *
2;
// TODO: Radar location
vertices[vIndex++] = 38.6986f;
vertices[vIndex++] = -90.6828f;
vertices[vIndex++] = coordinates[offset1];
vertices[vIndex++] = coordinates[offset1 + 1];
vertices[vIndex++] = coordinates[offset2];
vertices[vIndex++] = coordinates[offset2 + 1];
vertexCount = 3;
}
}
}
vertices.resize(vIndex);
if (momentData0->data_word_size() == 8)
{
dataMoments8.resize(mIndex);
}
else
{
dataMoments16.resize(mIndex);
}
timer.stop();
BOOST_LOG_TRIVIAL(debug)
<< logPrefix_ << "Vertices calculated in " << timer.format(6, "%ws");
}
} // namespace view
} // namespace qt
} // namespace scwx