mirror of
https://github.com/ciphervance/supercell-wx.git
synced 2025-11-01 07:00:04 +00:00
289 lines
9 KiB
C++
289 lines
9 KiB
C++
#include <scwx/qt/util/geographic_lib.hpp>
|
|
#include <scwx/util/logger.hpp>
|
|
|
|
#include <numbers>
|
|
|
|
#include <GeographicLib/Gnomonic.hpp>
|
|
#include <geos/algorithm/PointLocation.h>
|
|
#include <geos/algorithm/distance/PointPairDistance.h>
|
|
#include <geos/algorithm/distance/DistanceToPoint.h>
|
|
#include <geos/geom/CoordinateSequence.h>
|
|
#include <geos/geom/GeometryFactory.h>
|
|
|
|
namespace scwx
|
|
{
|
|
namespace qt
|
|
{
|
|
namespace util
|
|
{
|
|
namespace GeographicLib
|
|
{
|
|
|
|
static const std::string logPrefix_ = "scwx::qt::util::geographic_lib";
|
|
static const auto logger_ = scwx::util::Logger::Create(logPrefix_);
|
|
|
|
const ::GeographicLib::Geodesic& DefaultGeodesic()
|
|
{
|
|
static const ::GeographicLib::Geodesic geodesic_ {
|
|
::GeographicLib::Constants::WGS84_a(),
|
|
::GeographicLib::Constants::WGS84_f()};
|
|
|
|
return geodesic_;
|
|
}
|
|
|
|
bool AreaContainsPoint(const std::vector<common::Coordinate>& area,
|
|
const common::Coordinate& point)
|
|
{
|
|
// Cannot have an area with just two points
|
|
if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back()))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
::GeographicLib::Gnomonic gnomonic {};
|
|
geos::geom::CoordinateSequence sequence {};
|
|
double x;
|
|
double y;
|
|
bool areaContainsPoint = false;
|
|
|
|
// Using a gnomonic projection with the test point as the center
|
|
// latitude/longitude, the projected test point will be at (0, 0)
|
|
geos::geom::CoordinateXY zero {};
|
|
|
|
// Create the area coordinate sequence using a gnomonic projection
|
|
for (auto& areaCoordinate : area)
|
|
{
|
|
gnomonic.Forward(point.latitude_,
|
|
point.longitude_,
|
|
areaCoordinate.latitude_,
|
|
areaCoordinate.longitude_,
|
|
x,
|
|
y);
|
|
sequence.add(x, y);
|
|
}
|
|
|
|
// If the sequence is not a ring, add the first point again for closure
|
|
if (!sequence.isRing())
|
|
{
|
|
sequence.add(sequence.front(), false);
|
|
}
|
|
|
|
// The sequence should be a ring at this point, but make sure
|
|
if (sequence.isRing())
|
|
{
|
|
try
|
|
{
|
|
areaContainsPoint =
|
|
geos::algorithm::PointLocation::isInRing(zero, &sequence);
|
|
}
|
|
catch (const std::exception&)
|
|
{
|
|
logger_->trace("Invalid area sequence");
|
|
}
|
|
}
|
|
|
|
return areaContainsPoint;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
units::angle::degrees<double>
|
|
GetAngle(double lat1, double lon1, double lat2, double lon2)
|
|
{
|
|
double azi1;
|
|
double azi2;
|
|
DefaultGeodesic().Inverse(lat1, lon1, lat2, lon2, azi1, azi2);
|
|
|
|
return units::angle::degrees<double> {azi1};
|
|
}
|
|
|
|
common::Coordinate GetCoordinate(const common::Coordinate& center,
|
|
units::angle::degrees<double> angle,
|
|
units::length::meters<double> distance)
|
|
{
|
|
double latitude;
|
|
double longitude;
|
|
|
|
DefaultGeodesic().Direct(center.latitude_,
|
|
center.longitude_,
|
|
angle.value(),
|
|
distance.value(),
|
|
latitude,
|
|
longitude);
|
|
|
|
return {latitude, longitude};
|
|
}
|
|
|
|
common::Coordinate GetCoordinate(const common::Coordinate& center,
|
|
units::meters<double> i,
|
|
units::meters<double> j)
|
|
{
|
|
// Calculate polar coordinates based on i and j
|
|
const double angle =
|
|
std::atan2(i.value(), j.value()) * 180.0 / std::numbers::pi;
|
|
const double range =
|
|
std::sqrt(i.value() * i.value() + j.value() * j.value());
|
|
|
|
double latitude;
|
|
double longitude;
|
|
|
|
DefaultGeodesic().Direct(
|
|
center.latitude_, center.longitude_, angle, range, latitude, longitude);
|
|
|
|
return {latitude, longitude};
|
|
}
|
|
|
|
units::length::meters<double>
|
|
GetDistance(double lat1, double lon1, double lat2, double lon2)
|
|
{
|
|
double distance;
|
|
DefaultGeodesic().Inverse(lat1, lon1, lat2, lon2, distance);
|
|
|
|
return units::length::meters<double> {distance};
|
|
}
|
|
|
|
bool AreaInRangeOfPoint(const std::vector<common::Coordinate>& area,
|
|
const common::Coordinate& point,
|
|
const units::length::meters<double> distance)
|
|
{
|
|
/*
|
|
Uses the gnomonic projection to determine if the area is in the radius.
|
|
|
|
The first property needed to make this work is that great circles become
|
|
lines in the projection.
|
|
The other key property needed to make this work is described bellow
|
|
R1 and R2 are the distances from the center point to two points
|
|
on the (non-flat) Earth.
|
|
R1' and R2' are the distances from the center point to the same
|
|
two points in the gnomonic projection.
|
|
if R1 > R2 then
|
|
R1' > R2'
|
|
else if R1 < R2 then
|
|
R1' < R2'
|
|
else if R1 == R2 then
|
|
R1' == R2'
|
|
|
|
This can also be written as:
|
|
r(d) is a function that takes the distance on Earth and converts it to a
|
|
distance on the projection.
|
|
R1' = r(R1), R2' = r(R2)
|
|
r(d) is increasing
|
|
|
|
In this case, R1 is a point the radius away from the center, and R2 is a
|
|
(all of the) point(s) on the edge of the area. This means that if the edge
|
|
is in the radius R1' on the projection, it is in the radius R1 on the Earth.
|
|
|
|
On a spherical geodesic this works fine. R is the radius of Earth. We are
|
|
also only concerned with points less than a hemisphere away, therefore
|
|
0 < R1,R2 < pi/2 * R (quarter of circumference because the point is in the
|
|
center of the hemisphere)
|
|
r(d) = R * tan(d / R) {0 < d < pi/2 * R}
|
|
tan(d / R) is increasing for {0 < d < pi/2 * R}
|
|
|
|
On non spherical geodesics, this may not work perfectly, but should be a
|
|
close approximation.
|
|
*/
|
|
// Cannot have an area with just two points
|
|
if (area.size() <= 2 || (area.size() == 3 && area.front() == area.back()))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Ensure that the same geodesic is used here as is for the radius
|
|
// calculation
|
|
::GeographicLib::Gnomonic gnomonic =
|
|
::GeographicLib::Gnomonic(DefaultGeodesic());
|
|
geos::geom::CoordinateSequence sequence {};
|
|
double x;
|
|
double y;
|
|
|
|
// Using a gnomonic projection with the test point as the center
|
|
// latitude/longitude, the projected test point will be at (0, 0)
|
|
geos::geom::CoordinateXY zero {};
|
|
|
|
// Create the area coordinate sequence using a gnomonic projection
|
|
for (auto& areaCoordinate : area)
|
|
{
|
|
gnomonic.Forward(point.latitude_,
|
|
point.longitude_,
|
|
areaCoordinate.latitude_,
|
|
areaCoordinate.longitude_,
|
|
x,
|
|
y);
|
|
// Check if the current point is the hemisphere centered on the point
|
|
if (std::isnan(x) || std::isnan(y))
|
|
{
|
|
return false;
|
|
}
|
|
sequence.add(x, y);
|
|
}
|
|
|
|
// get a point on the circle with the radius of the range in lat lon.
|
|
// Has the point be in the general direction of the area, which may help with
|
|
// non spherical geodesics
|
|
units::angle::degrees<double> angle = GetAngle(
|
|
point.latitude_, point.longitude_, area[0].latitude_, area[0].longitude_);
|
|
common::Coordinate radiusPoint = GetCoordinate(point, angle, distance);
|
|
// get the radius in gnomonic projection
|
|
gnomonic.Forward(point.latitude_,
|
|
point.longitude_,
|
|
radiusPoint.latitude_,
|
|
radiusPoint.longitude_,
|
|
x,
|
|
y);
|
|
// radius is greater than quarter circumference of the Earth, but the area
|
|
// is closer, so it is in range.
|
|
if (std::isnan(x) || std::isnan(y))
|
|
{
|
|
return true;
|
|
}
|
|
double gnomonicRadius = std::sqrt(x * x + y * y);
|
|
|
|
// If the sequence is not a ring, add the first point again for closure
|
|
if (!sequence.isRing())
|
|
{
|
|
sequence.add(sequence.front(), false);
|
|
}
|
|
|
|
// The sequence should be a ring at this point, but make sure
|
|
if (sequence.isRing())
|
|
{
|
|
try
|
|
{
|
|
if (geos::algorithm::PointLocation::isInRing(zero, &sequence))
|
|
{
|
|
return true;
|
|
}
|
|
else if (distance > units::length::meters<double>(0))
|
|
{
|
|
// Calculate the distance the area is from the point via conversion
|
|
// to a polygon.
|
|
auto geometryFactory =
|
|
geos::geom::GeometryFactory::getDefaultInstance();
|
|
auto linearRing = geometryFactory->createLinearRing(sequence);
|
|
auto polygon =
|
|
geometryFactory->createPolygon(std::move(linearRing));
|
|
|
|
geos::algorithm::distance::PointPairDistance distancePair;
|
|
geos::algorithm::distance::DistanceToPoint::computeDistance(
|
|
*polygon, zero, distancePair);
|
|
return gnomonicRadius >= distancePair.getDistance();
|
|
}
|
|
}
|
|
catch (const std::exception&)
|
|
{
|
|
logger_->trace("Invalid area sequence");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace GeographicLib
|
|
} // namespace util
|
|
} // namespace qt
|
|
} // namespace scwx
|